Genetistas Guayaquil - Especialistas en Genética Guayaquil

1.185 Médicos Registrados en 110 Especialidades - Somos el Directorio No.1 de la Ciudad


banner

 

 

 

MEDICOS GENETISTAS EN GUAYAQUIL

 

hyu  hyu

 

hyu  hyu

 

 

 

 

GENETICA
TELEFONO
DIRECCION
Blum Francisco
2680673
Kennedy Norte Mz. 110
Muzzio Prott Letty
2881712
 
Soria Jofree
2349011
 
Stephan Schmidt Aida
2885351
 
Vargas Vera Ramón
2109186
Omni Hospital

 

 

 

La genética (del griego antiguo γενετικός /guennetikós/, ‘genetivo’, y este de γένεσις /guénesis/, ‘origen’) es la rama y estudio de la biología que busca comprender la herencia biológica que se refleja de generación en generación. Se trata de una de las areas fundamentales de la biología moderna, abarcando en su interior un gran número de disciplinas propias e interdisciplinares, entrelazándose con la bioquímica y la biología celular para formar la biología molecular.

El estudio de la genética permite conocer qué es lo que exactamente ocurre en el ciclo celular, (replicar nuestras células) y reproducción, (meiosis) de los seres vivos y cómo puede ser que, por ejemplo, entre seres humanos se transmiten características biológicas genotipo (contenido del genoma específico de un individuo en forma de ADN), características físicas fenotipo, de apariencia y hasta de personalidad.

El principal objeto de estudio de la genética son los genes, formados por segmentos de ADN (doble hebra) y ARN (hebra simple), tras la transcripción de ARN mensajero, ARN ribosómico y ARN de transferencia, los cuales se sintetizan a partir de ADN. El ADN controla la estructura y el funcionamiento de cada célula, con la capacidad de crear copias exactas de sí mismo, tras un proceso llamado replicación, en el cual el ADN se replica.

En 1865 un monje científico checo-alemán llamado Gregor Mendel observó que los organismos heredan caracteres de manera diferenciada. Estas unidades básicas de la herencia son actualmente denominadas genes.

Fue William Bateson quien, en 1905, utilizó el término "Genetics" por primera vez.

En 1941 Edward Lawrie Tatum y George Wells Beadle demuestran que los genes [ARN-mensajero] codifican proteínas; luego en 1953 James D. Watson y Francis Crick determinan que la estructura del ADN es una doble hélice en direcciones antiparalelas, polimerizadas en dirección 5' a 3', para el año 1977 Fred Sanger, Walter Gilbert, y Allan Maxam secuencian ADN completo del genoma del bacteriófago y en 1990 se funda el Proyecto Genoma Humano.

Aunque la genética juega un papel muy significativo en la apariencia y el comportamiento de los organismos, es la combinación de la genética replicación, transcripción, procesamiento (maduración del ARN) con las experiencias del organismo la que determina el resultado final.

Los genes corresponden a regiones del ADN o ARN, dos moléculas compuestas de una cadena de cuatro tipos diferentes de bases nitrogenadas (adenina, timina, citosina y guanina en ADN), en las cuales tras la transcripción (síntesis de ARN) se cambia la timina por uracilo —la secuencia de estos nucleótidos es la información genética que heredan los organismos. El ADN existe naturalmente en forma bicatenaria, es decir, en dos cadenas en que los nucleótidos de una cadena complementan los de la otra.

La secuencia de nucleótidos de un gen es traducida por las células para producir una cadena de aminoácidos, creando proteínas —el orden de los aminoácidos en una proteína corresponde con el orden de los nucleótidos del gen. Esto recibe el nombre de código genético. Los aminoácidos de una proteína determinan cómo se pliega en una forma tridimensional y responsable del funcionamiento de la proteína. Las proteínas ejecutan casi todas las funciones que las células necesitan para vivir.

El genoma es la totalidad de la información genética que posee un organismo en particular. Por lo general, al hablar de genoma en los seres eucarióticos nos referimos solo al ADN contenido en el núcleo, organizado en cromosomas. Pero no debemos olvidar que también la mitocondria contiene genes llamado genoma mitocondrial.

La genética se subdivide en varias ramas, como:
Clásica o [Genética mendeliana| mendeliana]: Se basa en las leyes de Mendel para predecir la herencia de ciertos caracteres o enfermedades. La genética clásica también analiza como el fenómeno de la recombinación o el ligamento alteran los resultados esperados según las leyes de Mendel.
Citogenética: El eje central de esta disciplina es el estudio del cromosoma y su dinámica, así como el estudio del ciclo celular y su repercusión en la herencia. Está muy vinculada a la biología de la reproducción y a la biología celular.
Genética del desarrollo: Estudia como los genes son regulados para formar un organismo completo a partir de una célula inicial.
Cuantitativa: Analiza el impacto de múltiples genes sobre el fenotipo, muy especialmente cuando estos tienen efectos de pequeña escala.
Molecular: Estudia el ADN, su composición y la manera en que se duplica. Así mismo, estudia la función de los genes desde el punto de vista molecular: Como transmiten su información hasta llegar a sintetizar proteínas.
Evolutiva y de poblaciones: Se preocupa del comportamiento de los genes en una población y de cómo esto determina la evolución de los organismos.
Mutagénesis: Estudia el origen y las repercusiones de las mutaciones en los diferentes niveles del material genético.

La ingeniería genética es la especialidad que utiliza tecnología de la manipulación y trasferencia del ADN de unos organismos a otros, permitiendo controlar algunas de sus propiedades genéticas. Mediante la ingeniería genética se pueden potenciar y eliminar cualidades de organismos en el laboratorio (véase Organismo genéticamente modificado). Por ejemplo, se pueden corregir defectos genéticos (terapia génica), fabricar antibióticos en las glándulas mamarias de vacas de granja o clonar animales como la oveja Dolly.

Algunas de las formas de controlar esto es mediante transfección (lisar células y usar material genético libre), conjugación (plásmidos) y transducción (uso de fagos o virus), entre otras formas. Además se puede ver la manera de regular esta expresión genética en los organismos.

Respecto a la terapia génica, antes mencionada, hay que decir que todavía no se ha conseguido llevar a cabo un tratamiento, con éxito, en humanos para curar alguna enfermedad. Todas las investigaciones se encuentran en la fase experimental. Debido a que aún no se ha descubierto la forma de que la terapia funcione (tal vez, aplicando distintos métodos para introducir el ADN), cada vez son menos los fondos dedicados a este tipo de investigaciones. Por otro lado, este es un campo que puede generar muchos beneficios económicos, ya que este tipo de terapias son muy costosas, por lo que, en cuanto se consiga mejorar la técnica, es de suponer que las inversiones subirán.

Genética

La genética (del griego antiguo γενετικός /guennetikós/, ‘genetivo’, y este de γένεσις /guénesis/, ‘origen’) es el área de estudio de la biología que busca comprender y explicar cómo se transmite la herencia biológica de generación en generación. Se trata de una de las áreas fundamentales de la biología moderna, abarcando en su interior un gran número de disciplinas propias e interdisciplinarias que se relacionan directamente con la bioquímica y la biología celular.

El principal objeto de estudio de la genética son los genes, formados por segmentos de ADN y ARN, tras la transcripción de ARN mensajero, ARN ribosómico y ARN de transferencia, los cuales se sintetizan a partir de ADN. El ADN controla la estructura y el funcionamiento de cada célula, tiene la capacidad de crear copias exactas de sí mismo tras un proceso llamado replicación.

Gregor Johann Mendel (20 de julio de 18224 -6 de enero de 1884) fue un monje agustino católico y naturalista nacido en Heinzendorf, Austria (actual Hynčice, distrito Nový Jičín, República Checa) que descubrió, por medio de la experimentación de mezclas de diferentes variedades de guisantes, chícharos o arvejas (Pisum sativum), las llamadas Leyes de Mendel que dieron origen a la herencia genética.

En 1941 Edward Lawrie Tatum y George Wells Beadle demostraron que los genes [ARN-mensajero] codifican proteínas; luego en 1953 James D. Watson y Francis Crick determinaron que la estructura del ADN es una doble hélice en direcciones antiparalelas, polimerizadas en dirección 5' a 3', para el año 1977 Fred Sanger, Walter Gilbert, y Allan Maxam secuencian ADN completo del genoma del bacteriófago y en 1990 se funda el Proyecto Genoma Humano.

Aunque la genética juega un papel muy significativo en la apariencia y el comportamiento de los organismos, es la combinación de la genética replicación, transcripción, procesamiento (maduración del ARN) con las experiencias del organismo la que determina el resultado final.

Los genes corresponden a regiones del ADN o ARN, dos moléculas compuestas de una cadena de cuatro tipos diferentes de bases nitrogenadas (adenina, timina, citosina y guanina en ADN), en las cuales tras la transcripción (síntesis de ARN) se cambia la timina por uracilo —la secuencia de estos nucleótidos es la información genética que heredan los organismos. El ADN existe naturalmente en forma bicatenaria, es decir, en dos cadenas en que los nucleótidos de una cadena complementan los de la otra.

La secuencia de nucleótidos de un gen es traducida por las células para producir una cadena de aminoácidos, creando proteínas —el orden de los aminoácidos en una proteína corresponde con el orden de los nucleótidos del gen. Esto recibe el nombre de código genético. Los aminoácidos de una proteína determinan cómo se pliega en una forma tridimensional y responsable del funcionamiento de la proteína. Las proteínas ejecutan casi todas las funciones que las células necesitan para vivir.

El genoma es la totalidad de la información genética que posee un organismo en particular. Por lo general, al hablar de genoma en los seres eucarióticos se refiere solo al ADN contenido en el núcleo, organizado en cromosomas pero también la mitocondria contiene genes y llamada genoma mitocondrial.

Subdivisiones de la genética

La genética se subdivide en varias ramas, como:
Clásica o [Genética mendeliana| mendeliana]: Se basa en las leyes de Mendel para predecir la herencia de ciertos caracteres o enfermedades. La genética clásica también analiza como el fenómeno de la recombinación o el ligamento alteran los resultados esperados según las leyes de Mendel.
Citogenética: El eje central de esta disciplina es el estudio del cromosoma y su dinámica, así como el estudio del ciclo celular y su repercusión en la herencia. Está muy vinculada a la biología de la reproducción y a la biología celular.
Genética del desarrollo: Estudia como los genes son regulados para formar un organismo completo a partir de una célula inicial.
Cuantitativa: Analiza el impacto de múltiples genes sobre el fenotipo, muy especialmente cuando estos tienen efectos de pequeña escala.
Molecular: Estudia el ADN, su composición y la manera en que se duplica. Así mismo, estudia la función de los genes desde el punto de vista molecular: Como transmiten su información hasta llegar a sintetizar proteínas.
Evolutiva y de poblaciones: Se preocupa del comportamiento de los genes en una población y de cómo esto determina la evolución de los organismos.
Mutagénesis: Estudia el origen y las repercusiones de las mutaciones en los diferentes niveles del material genético.

Ingeniería genética

La ingeniería genética es la especialidad que utiliza tecnología de la manipulación y trasferencia del ADN de unos organismos a otros, permitiendo controlar algunas de sus propiedades genéticas. Mediante la ingeniería genética se pueden potenciar y eliminar cualidades de organismos en el laboratorio (véase Organismo genéticamente modificado). Por ejemplo, se pueden corregir defectos genéticos (terapia génica), fabricar antibióticos en las glándulas mamarias de vacas de granja o clonar animales como la oveja Dolly.

Algunas de las formas de controlar esto es mediante transfección (lisar células y usar material genético libre), conjugación (plásmidos) y transducción (uso de fagos o virus), entre otras formas. Además se puede ver la manera de regular esta expresión genética en los organismos.

Respecto a la terapia génica, antes mencionada, hay que decir que todavía no se ha conseguido llevar a cabo un tratamiento, con éxito, en humanos para curar alguna enfermedad. Todas las investigaciones se encuentran en la fase experimental. Debido a que aún no se ha descubierto la forma de que la terapia funcione (tal vez, aplicando distintos métodos para introducir el ADN), cada vez son menos los fondos dedicados a este tipo de investigaciones. Por otro lado, este es un campo que puede generar muchos beneficios económicos, ya que este tipo de terapias son muy costosas, por lo que, en cuanto se consiga mejorar la técnica, es de suponer que las inversiones subirán.

Gen

Un gen es una unidad de información en un locus de Ácido desoxirribonucleico (ADN) que codifica un producto funcional, o Ácido ribonucleico (ARN) o proteínas y es la unidad de herencia molecular.1 2 También se conoce como una secuencia de nucleótidos en la molécula de ADN. O de ARN, en el caso de algunos virus y contiene la información necesaria para la síntesis de una macromolécula con función celular específica, habitualmente proteínas pero también ARN mensajero (ARNm), Ácido ribonucleico ribosómico (ARNr) y ARN de transferencia (ARNt).

Esta función puede estar vinculada con el desarrollo o funcionamiento de una función fisiológica. El gen es considerado la unidad de almacenamiento de información genética y unidad de la herencia, pues transmite esa información a la descendencia. Los genes se disponen, pues, a lo largo de ambas cromátidas de los cromosomas y ocupan, en el cromosoma, una posición determinada llamada locus. El conjunto de genes de una especie se denomina genoma. Los genes están localizados en los cromosomas en el núcleo celular.

El concepto de gen ha ido variando a lo largo del tiempo, conforme ha avanzado la ciencia que lo estudia, la genética:
Gregorio Mendel en sus experimentos propuso la idea original del gen, aunque él no los denominó genes, sino factores, y vendrían a ser los responsables de la transmisión de los caracteres de una generación a la siguiente (lo que ahora llamamos genotipo). El gen mendeliano es una unidad de función, estructura, transmisión, mutación y evolución que se distribuye ordenada y linealmente en los cromosomas.
La palabra gen fue acuñada en 1909 por el botánico danés Wilhelm Johannsen a partir de una palabra griega que significa "generar", refiriéndose a la unidad física y funcional de la herencia biológica.
Hacia 1950, se impuso el concepto de gen como la cadena de ADN que dirige la síntesis de una proteína. Éste es un concepto que proporciona una naturaleza molecular o estructural al gen. El gen codifica proteínas y debe tener una estructura definida por el orden lineal de sus tripletes o codones.
Más tarde surge el concepto de gen como lo que actualmente se llama un cistrón: la cadena de ADN capaz de dirigir la síntesis de un ARN que codifica para un polipéptido (Dogma central de la biología molecular). Este concepto surge al comprobar que la mayoría de las proteínas están formadas por más de una cadena polipeptídica y que cada una de ellas está codificada por un gen diferente.


Actualmente se sabe que algunos genes codifican más de un polipéptido y que una proteína puede ser codificada por el conjunto de diferentes genes. La existencia de genes solapantes y el procesamiento alternativo rebaten la hipótesis de un gen → un polipéptido. Más bien debe proponerse la relación inversa, un polipéptido → un gen. Además existen algunos genes que no codifican proteínas sino ARN con función propia (ARN transferentes y ARN ribosómicos, por ejemplo) y que no se traducen, por lo que no es necesaria la traducción para que un gen tenga una función determinada. El gen es, pues, la unidad mínima de función genética, que puede heredarse.


A partir de la teoría original de Mendel de la determinación de caracteres físicos específicos (por.ej., el color de la flor) mediante partículas hereditarias discretas, el concepto de gen ha evolucionado gradualmente hacia el de unidad funcional. Esto fue anunciado por primera vez en 1945 por el genetista George Beadle (1903-1989), quien propuso que cada gen era específico: la hipótesis «un gen, una proteína». Fue modificada posteriormente cuando se comprendió que los genes podían determinar además proteínas no enzimáticas y también cadenas polipeptídicas individuales (sub-unidades proteicas) y los diversos tipos de ARN involucrados en la síntesis de proteínas. El desarrollo de nuevas técnicas en la década de los sesenta y ochenta, especialmente la secuenciación del ADN y la clonación de los genes, permitió a los genetistas moleculares desentrañar la estructura precisa de los genes hasta el nivel de las bases.

Tales técnicas aportan mucha información sobre cómo se activan y desactivan los genes y sobre otros aspectos de su expresión.

Tipos de genes

Un gen es una secuencia o segmento de ADN necesario para la síntesis de ARN funcional, como el ARN de transferencia o el ARN ribosomal. Sin embargo, estos dos tipos de ARN no codifican proteínas, lo cual es hecho por el ARN mensajero. Para ello, la transcripción genera una molécula de ARN que posteriormente sufrirá traducción en los ribosomas, proceso por el cual se genera una proteína. Muchos genes se encuentran constituidos por regiones codificantes (exones) interrumpidas por regiones no codificantes (intrones) que son eliminadas en el procesamiento del ARN (splicing). En células procariotas esto no ocurre pues los genes de procariotas carecen de intrones. La secuencia de bases presente en el ARN determina la secuencia de aminoácidos de la proteína por medio del código genético.

Otros genes no son traducidos a proteína, sino que cumplen su función en forma de ARN. Entre éstos, encontramos genes de ARN transferente, ARN ribosómico, ribozimas y otros ARN pequeños de funciones diversas.

Algunos genes han sufrido procesos de mutación u otros fenómenos de reorganización y han dejado de ser funcionales, pero persisten en los genomas de los seres vivos. Al dejar de tener función, se denominan pseudogenes, que constituyen un recurso evolutivo para la especie, ya que son regiones de ADN quasifuncionales que pueden aceptar mutaciones (y generar nuevas funciones) sin perjuicio de las funciones que ya se desarrollan en el organismo, y pueden ser muy parecidos a otros genes del mismo organismo que sean funcionales.

Evolución molecular

La reproducción de ADN se hace con certera extrema, sin embargo errores, llamados mutaciones, sí se ocurran. La tasa de errores en las células eukaryotas puede bajar hasta 10−8 por nucleótido por replicación, mientras por algunos viruses de ARN se pueda hacer tan alto como 10−3. Así cada generación, cada genoma humana acumule nuevas mutaciones.6 Pequeñas mutaciones se puedan causar por replicación de ADN y la secuela del daño de ADN y incluye mutaciones genéticas, en las cuales un base singular se altera, y mutaciones con desplazamiento del marco de lectura en las cuales se inserte o se borre el base. Cualquiera de estas mutaciones se puede cambiar el gen por misense (cambios a un codón por otro aminoácido) o mutación sin sentido (un precipitado codón de terminación). Se pueden causar mutaciones más grandes por errores en la recombinación por causar mutación cromosómica incluyendo la duplicación génica, borrado, reorganización o inversión de largas secciones de una cromosoma. También el mecanismo de la reparación del ADN, lo cual normalmente revierta mutaciones, pueda introducir errores cuando repare el daño físico a la molécula, y se trata como más importante que restaurar una copia exacta, por ejemplo durante la reparación de una quiebra de doble hilo.

Cuando existen múltiples, diferentes alelos por un gen que se presente en la población de una especie se llama polimorfismo. La mayoría de alelos distintos se funcionen de manera equivalente; sin embargo algunos puedan levantar caracteres biológicos distintos. El alelo más común de un gen se llama wild type, y alelos raros se llaman mutantes. La variación en frecuencias relativas de alelos diferentes en una población se causa la selección natural y la deriva genética. El alelo del tipo wild type no es definitivamente el antepasado de los alelos menos comunes ni es cierto que tenga más aptitud.

La mayoría de las mutaciones que ocurran adentra de genes se llaman neutrales porque no afecten el fenotipo del organismo. Algunas mutaciones no cambien la secuencia de aminoácidos porque codones múltiples codifiquen el mismo aminoácido. Otras mutaciones son neutrales si terminen en cambios a la secuencia del aminoácido, pero la proteína siga funcionando igual con el nuevo aminoácido. Sin embargo muchas mutaciones son nocivas si no letales, y se las borre por la selección natural. Trastornos genéticos resulten de mutaciones nocivas, y a veces debida a una mutación espontanea en el individual afectado, o se hereden. Unas pocas se beneficien al organismo, mejorando la aptitud, y se importan mucho porque dirijan hasta la evolución adaptativo.

Homología de secuencias

Genes con un ancestro común más reciente, o sea unos abolengos evolutivos compartidos, se conocen como homologos.9 Estos genes aparezcan, o por la duplicación de genes adentro del genoma de un organismo, y se llaman genes paralogos, o se resulten de divergencias de los genes después de un evento de especiación, se llaman genes ortologos, y muchas veces desempeñen una función que es lo mismo o semejante en organismos relacionados. Se asuma a menudo que las funciones de los genes ortologos se aparezcan más que las de los genes paralogos, aunque las diferencias son muy pequeñas.

Se pueda medir la relación entre genes por comparar su alineamiento de secuencias de ADN. El grado de secuencia semejante entre genes homólogos se llamad secuencia conservada. La mayoría de los cambios no afecten la función del gen y por esto los genes se acumulen mutaciones con el paso del tiempo por la evolución molecular neutralista. Además cualquier selección en un gen causará la divergencia de su secuencia a un rato diferente.

Origines de nuevos genes

El fuente más común de genes en las células eucariotas es la duplicación cromosómica, la cual crea variación en el número de copias de un gen que ya existe en el genoma. Los genes resultantes (paralogos) luego quizás divergieran en su secuencia y también en su función. Grupos de genes formados de esta manera se llaman una familia génica. Las duplicaciones y perdidas genéticas adentro de una familia son comunes y representan un fuente mayor de la biodiversidad evolutiva. A veces, la duplicación de genes resultara en una copia no funcional de un gen, o una copia que se deba funcionar pero por las mutaciones experimenta perdidas de funciones; tales genes se llaman pseudogéns.

Genomas

El tamaño de el genoma y el número de genes codificantes varían enormemente entre organismos. Los genomas más pequeños ocurren en los viruses, los cuales pueden tener solo dos genes codificantes por codigar las proteínas, y viroides, los cuales actúan como un gen singular de ARN no codificante. Por otra parte las plantas pueden tener los genomas muy grandes, con arroz que contiene >46,000 genes codificantes de proteínas. El número total de genes codificantes de proteínas (la proteoma de la Tierra) se estima como 5 millones de secuencias.

Aunque el número de pares de bases de ADN en el genoma humano se conoce desde la década de los 1960, la estimación del número de genes se ha cambiado durante los años por razones como cambios en la definición de que es un gen, y mejoras en los métodos usados por detectar los genes. Predicciones teóricos iniciales del número de los genes humanos se alcanzaran dos millones. Experimentos iniciales indicaron que fueron entre 50,000–100,000 transcripciones de genes (Marcador de secuencia expresadas). Luego, las secuencias hechas en el Proyecto Genoma Humano indicaron que muchos de los transcripciones fueron variantes alternativas del mismo gen, y el número total de genes codificantes proteínas se bajó hasta ~20,000 con 13 de los genes codificantes en el genoma de la mitochondria. Del genoma humano solo 1–2% consistan de genes codificantes de proteínas, con los demás siendo ADN no codificante como intrones, retrotransposones, y ARN no codificante.

Cambios en los genes

Los organismos diploides disponen de dos juegos de cromosomas homólogos, cada uno de ellos proveniente de uno de los padres, cuyos gametos (creado por meiosis) se fusionaron hacia una célula conocido como un cigoto, durante la reproducción sexual. Por ejemplo, los gametos (huevo y esperma) del ser humano solo contienen 23 cromosomas, pero ya terminado la división celular del cigoto creado por la fertilización en cuatro células, cada célula del nuevo bebé va a tener 23 pares de cromosomas, uno de los pares procedente de la madre y otra del padre.

Algunas enfermedades como la anemia drepanocítica, se pueden ocasionar por un cambio en un solo gen. Los genes pueden aparecer en versiones diferentes, con pequeñas variaciones en su secuencia: es lo que se denomina alelos. Los alelos pueden ser dominantes o recesivos. Cuando una sola copia del alelo hace que se manifieste el rasgo o el fenotipo, el alelo es dominante. Cuando son precisas dos copias del alelo, para que se manifieste su efecto, el alelo es recesivo.

Regulación

Un gen es el conjunto de una secuencia determinada de nucleótidos de uno de los lados de la "escalera" del cromosoma referenciado. La secuencia puede llegar a formar proteínas, o serán inhibidas, dependiendo del programa asignado para la célula que aporte los cromosomas.

Ingeniería genética

En la ingeniería genética se modifica el genoma de un organismo usando métodos de la biotecnología. Desde la década de los 1970, se han desarrolladas técnicas que específicamente agreguen, quiten y editen los genes de un organismo. La ingeniería de genomas se ha desarrollado más recientemente algunas técnicas que usan los nucleases de enzimas por crear blanqueadas reparaciones de ADN en una cromosoma, o por interrumpir o editar un gen cuando la quiebra se repare. La expresión semejante es biología sintética que a veces se use por referir a la ingeniería extensiva de un organismo.

La ingeniería genética es ahora una herramienta de investigaciones rutina usando un organismo modelo. Por ejemplo, agregar genes a las bacterias es facíl mientras linajes de ratón knockout con un función de gen interrumpido se usan por investigar la función de ese gen. Se han modificados muchos genes por aplicaciones en la agricultura, la medicina y la biotecnología industrial.

Por organismos multicelulares, típicamente un embrión se ingeniera, lo cual crezca hasta ser un organismo genéticamente modificado adulto. Sin embargo, los genomas en células de un organismo adulto se puede editar por usar técnicas de terapia génica para intentar curar enfermedades con causas genéticas.

 

Código genético

El código genético es el conjunto de reglas que define traducir una secuencia de nucleótidos en el ARN a una secuencia de aminoácidos en una proteína, en todos los seres vivos, lo cual demuestra que ha tenido un origen único o universal, al menos en el contexto de nuestro planeta.

El código define la relación entre secuencias de tres nucleótidos, llamadas codones, y aminoácidos. De ese modo, cada codón se corresponde con un aminoácido específico.

La secuencia del material genético se compone de cuatro bases nitrogenadas distintas, que tienen una función equivalente a letras en el código genético: adenina (A), timina (T), guanina (G) y citosina (C) en el ADN y adenina (A), uracilo (U), guanina (G) y citosina (C) en el ARN.

Debido a esto, el número de codones posibles es 64, de los cuales 61 codifican aminoácidos (siendo además uno de ellos el codón de inicio, AUG) y los tres restantes son sitios de parada (UAA, llamado ocre; UAG, llamado ámbar; UGA, llamado ópalo). La secuencia de codones determina la secuencia de aminoácidos en una proteína en concreto, que tendrá una estructura y una función específica.

Descubrimiento del código genético

Cuando James Watson, Francis Crick, Maurice Wilkins y Rosalind Franklin crearon el modelo de la estructura del ADN se comenzó a estudiar en profundidad el proceso de traducción en las proteínas.

En 1955, Severo Ochoa y Marianne Grunberg-Manago aislaron la enzima polinucleótido fosforilasa, capaz de sintetizar ARNm sin necesidad de modelo a partir de cualquier tipo de nucleótidos que hubiera en el medio. Así, a partir de un medio en el cual tan sólo hubiera UDP (urdín difosfato) se sintetizaba un ARNm en el cual únicamente se repetía el ácido uridílico, es decir, un poli-U.

George Gamow postuló que el código genético estaría formado por tripletes de bases nitrogenadas (A;U;C;G)que a partir de estas se formarían los 20 aminoácidos esenciales para la vida. Partiendo del cuatro como las bases nitrogenadas y el exponente como la cantidad de uniones entre si. Se tendría 4^3=64 lo que viene siendo el primer número entero que llene esta necesidad, se tienen los tripletes sin sentido (UAA;UAG;UGA) que no forman aminoácidos, y como son 20 y tres tripletes de bases nitrogenadas se puede afirmar que hay 43 tripletes que forman el código genético degenerado al producir los mismos aminoácidos a pesar de ser distintos tripletes (esto resulta positivo para los seres vivos porque hay alternativas de producción de aminoácidos que terminan como proteínas cuando su producción por un triplete determinado no es posible)

Los codones constan de tres nucleótidos, esto fue demostrado por primera vez en el experimento de Crick, Brenner y colaboradores. Marshall Nirenberg y Heinrich J. Matthaei en 1961 en los Institutos Nacionales de Salud descubrieron la primera correspondencia codón-aminoácido. Empleando un sistema libre de células, tradujeron una secuencia ARN de poli-uracilo (UUU...) y descubrieron que el polipéptido que habían sintetizado sólo contenía fenilalanina. De esto se deduce que el codón UUU especifica el aminoácido fenilalanina. Continuando con el trabajo anterior, Nirenberg y Philip Leder fueron capaces de determinar la traducción de 54 codones, utilizando diversas combinaciones de ARNm, pasadas a través de un filtro que contiene ribosomas. Los ARNt se unían a tripletes específicos.

Posteriormente, Har Gobind Khorana completó el código, y poco después, Robert W. Holley determinó la estructura del ARN de transferencia, la molécula adaptadora que facilita la traducción. Este trabajo se basó en estudios anteriores de Severo Ochoa, quien recibió el premio Nobel en 1959 por su trabajo en la enzimología de la síntesis de ARN. En 1968, Khorana, Holley y Nirenberg recibieron el Premio Nobel en Fisiología o Medicina por su trabajo.

Transferencia de información

El genoma de un organismo se encuentra en el ADN o, en el caso de algunos virus, en el ARN. La porción de genoma que codifica varias proteínas o un ARN se conoce como gen. Esos genes que codifican proteínas están compuestos por unidades de trinucleótidos llamadas codones, cada una de los cuales codifica un aminoácido. Cada subunidad nucleotídica está formada por un fosfato, una desoxirribosa y una de las cuatro posibles bases nitrogenadas. Las bases purínicas adenina (A) y guanina (G) son más grandes y tienen dos anillos aromáticos. Las bases pirimidínicas citosina (C) y timina (T) son más pequeñas y sólo tienen un anillo aromático. En la configuración en doble hélice, dos cadenas de ADN están unidas entre sí por puentes de hidrógeno en una asociación conocida como emparejamiento de bases. Además, estos puentes siempre se forman entre una adenina de una cadena y una timina de la otra y entre una citosina de una cadena y una guanina de la otra. Esto quiere decir que el número de residuos A y T será el mismo en una doble hélice y lo mismo pasará con el número de residuos de G y C. En el ARN, la timina (T) se sustituye por uracilo (U), y la desoxirribosa por una ribosa.

Cada gen que codifica una proteína se transcribe en una molécula plantilla, que se conoce como ARN mensajero o ARNm. Éste, a su vez, se traduce en el ribosoma, en una cadena polipeptídica (formada por aminoácidos). En el proceso de traducción se necesita un ARN de transferencia, o ARNt, específico para cada aminoácido, con dicho aminoácido unido a él de forma covalente, guanosina trifosfato como fuente de energía y ciertos factores de traducción. Los ARNt tienen anticodones complementarios a los codones del ARNm y se pueden “cargar” covalentemente en su extremo 3' terminal con aminoácidos. Los ARNt individuales se cargan con aminoácidos específicos gracias a las enzimas llamadas aminoacil-ARNt sintetasas, que tienen alta especificidad tanto por un aminoácido como por un ARNt. Esta alta especificidad es el motivo fundamental del mantenimiento de la fidelidad en la traducción de proteínas.

Para un codón de tres nucleótidos (un triplete) son posibles 4³ = 64 combinaciones diferentes; los 64 codones están asignados a aminoácido o a señales de parada en la traducción. Si, por ejemplo, tenemos una secuencia de ARN, UUUAAACCC, y la lectura del fragmento empieza en la primera U (convenio 5' a 3'), habría tres codones que serían UUU, AAA y CCC, cada uno de los cuales especifica un aminoácido. Esta secuencia de ARN se traducirá en una secuencia de tres aminoácidos.

Características

Universalidad

El código genético es compartido por todos los organismos conocidos, incluyendo virus y organelos, aunque pueden aparecer pequeñas diferencias. Así, por ejemplo, el codón UUU codifica el aminoácido fenilalanina tanto en bacterias como en arqueas y en eucariontes. Este hecho indica que el código genético ha tenido un origen único en todos los seres vivos conocidos. La palabra "universal" en este contexto aplica solamente a la vida en la Tierra, ya que no se ha establecido la existencia de vida fuera del universo.

Gracias a la genética molecular, se han distinguido 22 códigos genéticos,2 que se diferencian del llamado código genético estándar por el significado de uno o más codones. La mayor diversidad se presenta en las mitocondrias, orgánulos de las células eucariotas que se originaron evolutivamente a partir de miembros del dominio Bacteria a través de un proceso de endosimbiosis. El genoma nuclear de los eucariotas sólo suele diferenciarse del código estándar en los codones de iniciación y terminación.

Especificidad y continuidad

Ningún codón codifica más de un aminoácido; de no ser así, conllevaría problemas considerables para la síntesis de proteínas específicas para cada gen. Tampoco presenta solapamiento: los tripletes se hallan dispuesto de manera lineal y continua, de manera que entre ellos no existan comas ni espacios y sin compartir ninguna base nitrogenada. Su lectura se hace en un solo sentido (5' - 3'), desde el codón de iniciación hasta el codón de parada. Sin embargo, en un mismo ARNm pueden existir varios codones de inicio, lo que conduce a la síntesis de varios polipéptidos diferentes a partir del mismo transcrito.

Degeneración

El código genético tiene redundancia pero no ambigüedad (ver tablas de codones). Por ejemplo, aunque los codones GAA y GAG especifican ambos el ácido glutámico (redundancia), ninguno especifica otro aminoácido (no ambigüedad). Los codones que codifican un aminoácido pueden difeiones puntuales en la tercera posición. Debido a que las mutaciones de transición (purina a purina o pirimidina a pirimidina) son más probables que las de transversión (purina a pirimidina o viceversa), la equivalencia de purinas o de pirimidinas en los lugares dobles degenerados añade una tolerancia a los fallos complementaria.

Agrupamiento de codones por residuos aminoacídicos, volumen molar e hidropatía

Una consecuencia práctica de la redundancia es que algunos errores del código genético sólo causen una mutación silenciosa o un error que no afectará a la proteína porque la hidrofilidad o hidrofobidad se mantiene por una sustitución equivalente de aminoácidos; por ejemplo, un codón de NUN (N =cualquier nucleótido) tiende a codificar un aminoácido hidrófobo. NCN codifica residuos aminoacídicos que son pequeños en cuanto a tamaño y moderados en cuanto a hidropatía; NAN codifica un tamaño promedio de residuos hidrofílicos; UNN codifica residuos que no son hidrofílicos.3 4 Estas tendencias pueden ser resultado de una relación de las aminoacil ARNt sintetasas con los codones heredada un ancestro común de los seres vivos conocidos.

Incluso así, las mutaciones puntuales pueden causar la aparición de proteínas disfuncionales. Por ejemplo, un gen de hemoglobina mutado provoca la enfermedad de células falciformes. En la hemoglobina mutante un glutamato hidrofílico (Glu) se sustituye por una valina hidrofóbica (Val), es decir, GAA o GAG se convierte en GUA o GUG. La sustitución de glutamato por valina reduce la solubilidad de β-globina que provoca que la hemoglobina forme polímeros lineales unidos por interacciones hidrofóbicas entre los grupos de valina y causando la deformación falciforme de los eritrocitos. La enfermedad de las células falciformes no está causada generalmente por una mutación de novo. Más bien se selecciona en regiones de malaria (de forma parecida a la talasemia), ya que los individuos heterocigotos presentan cierta resistencia ante el parásito malárico Plasmodium (ventaja heterocigótica o heterosis).

La relación entre el ARNm y el ARNt a nivel de la tercera base se puede producir por bases modificadas en la primera base del anticodón del ARNt, y los pares de bases formados se llaman “pares de bases wobble” (tambaleantes). Las bases modificadas incluyen inosina y los pares de bases que no son del tipo Watson-Crick U-G.

Usos incorrectos del término

La expresión "código genético" se utiliza con frecuencia en los medios de comunicación como sinónimo de genoma, de genotipo, o de ADN. Frases como «Se analizó el código genético de los restos y coincidió con el de la desaparecida», o «se creará una base de datos con el código genético de todos los ciudadanos» son científicamente incorrectas. Es insensato, por ejemplo, aludir al «código genético de una determinada persona», porque el código genético es el mismo para todos los individuos. Sin embargo, cada organismo tiene un genotipo propio, aunque es posible que lo comparta con otros si se ha originado por algún mecanismo de multiplicación asexual.

 

Nótese que el codón AUG codifica la metionina pero además sirve de sitio de iniciación; el primer AUG en un ARNm es la región que codifica el sitio donde la traducción de proteínas se inicia.

Aminoácidos 21 y 22

Existen otros dos aminoácidos codificados por el código genético en algunas circunstancias y en algunos organismos. Son la selenocisteína y la pirrolisina.

La selenocisteína (Sec, U)5 es un aminoácido presente en multitud de enzimas (glutatión peroxidasas, tetraiodotironina   deiodinasas, tiorredoxina reductasas, formiato deshidrogenasas, glicina reductasas y algunas hidrogenasas). Está codificado por el codón UGA (que normalmente es de parada) cuando están presentes en la secuencia los elementos SecIS (secuencia de inserción de la selenocisteína).

El otro aminoácido, la pirrolisina (Pyl, O), es un aminoácido presente en algunas enzimas de arqueas metanógenas. Está codificado por el codón UAG (que normalmente es de parada) cuando están presentes en la secuencia los elementos PylIS (secuencia de inserción de la pirrolisina).

El origen del código genético

A pesar de las variaciones que existen, los códigos genéticos utilizados por todas las formas conocidas de vida son muy similares. Esto sugiere que el código genético se estableció muy temprano en la historia de la vida y que tiene un origen común en las formas de vida actuales. El análisis filogenético sugiere que las moléculas ARNt evolucionaron antes que el conjunto actual de aminoacil-ARNt sintetasas.

El código genético no es una asignación aleatoria de los codones a aminoácidos. Por ejemplo, los aminoácidos que comparten la misma vía biosintética tienden a tener la primera base igual en sus codones y aminoácidos con propiedades físicas similares tienden a tener similares a codones.

Experimentos recientes demuestran que algunos aminoácidos tienen afinidad química selectiva por sus codones. Esto sugiere que el complejo mecanismo actual de traducción del ARNm que implica la acción ARNt y enzimas asociadas, puede ser un desarrollo posterior y que, en un principio, las proteínas se sintetizaran directamente sobre la secuencia de ARN, actuando éste como ribozima y catalizando la formación de enlaces peptídicos (tal como ocurre con el ARNr 23S del ribosoma).

Se ha planteado la hipótesis de que el código genético estándar actual surgiera por expansión biosintética de un código simple anterior. La vida primordial pudo adicionar nuevos aminoácidos (por ejemplo, subproductos del metabolismo), algunos de los cuales se incorporaron más tarde a la maquinaria de codificación genética. Se tienen pruebas, aunque circunstanciales, de que formas de vida primitivas empleaban un menor número de aminoácidos diferentes, aunque no se sabe con exactitud que aminoácidos y en que orden entraron en el código genético.

Otro factor interesante a tener en cuenta es que la selección natural ha favorecido la degeneración del código para minimizar los efectos de las mutaciones y es debido a la interacción de dos átomos distintos en la reacción . Esto ha llevado a pensar que el código genético primitivo podría haber constado de codones de dos nucleótidos, lo que resulta bastante coherente con la hipótesis del balanceo del ARNt durante su acoplamiento (la tercera base no establece puentes de hidrógeno de Watson y Crick).

 

Ácido desoxirribonucleico

El ácido desoxirribonucleico, abreviado como ADN, es un ácido nucleico que contiene las instrucciones genéticas usadas en el desarrollo y funcionamiento de todos los organismos vivos conocidos y algunos virus, y es responsable de su transmisión hereditaria. La función principal de la molécula de ADN es el almacenamiento a largo plazo de información. Muchas veces, el ADN es comparado con un plano o una receta, o un código, ya que contiene las instrucciones necesarias para construir otros componentes de las células, como las proteínas y las moléculas de ARN. Los segmentos de ADN que llevan esta información genética son llamados genes, pero las otras secuencias de ADN tienen propósitos estructurales o toman parte en la regulación del uso de esta información genética.

Desde el punto de vista químico, el ADN es un polímero de nucleótidos, es decir, un polinucleótido. Un polímero es un compuesto formado por muchas unidades simples conectadas entre sí, como si fuera un largo tren formado por vagones. En el ADN, cada vagón es un nucleótido, y cada nucleótido, a su vez, está formado por un azúcar (la desoxirribosa), una base nitrogenada (que puede ser adenina→A, timina→T, citosina→C o guanina→G) y un grupo fosfato que actúa como enganche de cada vagón con el siguiente. Lo que distingue a un vagón (nucleótido) de otro es, entonces, la base nitrogenada, y por ello la secuencia del ADN se especifica nombrando sólo la secuencia de sus bases. La disposición secuencial de estas cuatro bases a lo largo de la cadena (el ordenamiento de los cuatro tipos de vagones a lo largo de todo el tren) es la que codifica la información genética: por ejemplo, una secuencia de ADN puede ser ATGCTAGATCGC... En los organismos vivos, el ADN se presenta como una doble cadena de nucleótidos, en la que las dos hebras están unidas entre sí por unas conexiones denominadas puentes de hidrógeno.

Para que la información que contiene el ADN pueda ser utilizada por la maquinaria celular, debe copiarse en primer lugar en unos trenes de nucleótidos, más cortos y con unas unidades diferentes, llamados ARN. Las moléculas de ARN se copian exactamente del ADN mediante un proceso denominado transcripción. Una vez procesadas en el núcleo celular, las moléculas de ARN pueden salir al citoplasma para su utilización posterior. La información contenida en el ARN se interpreta usando el código genético, que especifica la secuencia de los aminoácidos de las proteínas, según una correspondencia de un triplete de nucleótidos (codón) para cada aminoácido. Esto es, la información genética (esencialmente: qué proteínas se van a producir en cada momento del ciclo de vida de una célula) se halla codificada en las secuencias de nucleótidos del ADN y debe traducirse para poder funcionar. Tal traducción se realiza usando el código genético a modo de diccionario. El diccionario "secuencia de nucleótido-secuencia de aminoácidos" permite el ensamblado de largas cadenas de aminoácidos (las proteínas) en el citoplasma de la célula. Por ejemplo, en el caso de la secuencia de ADN indicada antes (ATGCTAGATCGC...), la ARN polimerasa utilizaría como molde la cadena complementaria de dicha secuencia de ADN (que sería TAC-GAT-CTA-GCG-...) para transcribir una molécula de ARNm que se leería AUG-CUA-GAU-CGC-...; el ARNm resultante, utilizando el código genético, se traduciría como la secuencia de aminoácidos metionina-leucina-ácido aspártico-arginina-...

Las secuencias de ADN que constituyen la unidad fundamental, física y funcional de la herencia se denominan genes. Cada gen contiene una parte que se transcribe a ARN y otra que se encarga de definir cuándo y dónde deben expresarse. La información contenida en los genes (genética) se emplea para generar ARN y proteínas, que son los componentes básicos de las células, los "ladrillos" que se utilizan para la construcción de los orgánulos u organelos celulares, entre otras funciones.

Dentro de las células, el ADN está organizado en estructuras llamadas cromosomas que, durante el ciclo celular, se duplican antes de que la célula se divida. Los organismos eucariotas (por ejemplo, animales, plantas, y hongos) almacenan la mayor parte de su ADN dentro del núcleo celular y una mínima parte en elementos celulares llamados mitocondrias, y en los plastos y los centros organizadores de microtúbulos o centríolos, en caso de tenerlos; los organismos procariotas (bacterias y arqueas) lo almacenan en el citoplasma de la célula, y, por último, los virus ADN lo hacen en el interior de la cápside de naturaleza proteica. Existen multitud de proteínas, como por ejemplo las histonas y los factores de transcripción, que se unen al ADN dotándolo de una estructura tridimensional determinada y regulando su expresión. Los factores de transcripción reconocen secuencias reguladoras del ADN y especifican la pauta de transcripción de los genes. El material genético completo de una dotación cromosómica se denomina genoma y, con pequeñas variaciones, es característico de cada especie.

Historia de la genética

El ADN lo aisló por primera vez, durante el invierno de 1869, el médico suizo Friedrich Miescher mientras trabajaba en la Universidad de Tubinga. Miescher realizaba experimentos acerca de la composición química del pus de vendas quirúrgicas desechadas cuando notó un precipitado de una sustancia desconocida que caracterizó químicamente más tarde. Lo llamó nucleína, debido a que lo había extraído a partir de núcleos celulares. Se necesitaron casi 70 años de investigación para poder identificar los componentes y la estructura de los ácidos nucleicos.

En 1919 Phoebus Levene identificó que un nucleótido está formado por una base nitrogenada, un azúcar y un fosfato. Levene sugirió que el ADN generaba una estructura con forma de solenoide (muelle) con unidades de nucleótidos unidos a través de los grupos fosfato. En 1930 Levene y su maestro Albrecht Kossel probaron que la nucleína de Miescher es un ácido desoxirribonucleico (ADN) formado por cuatro bases nitrogenadas (citosina (C), timina (T), adenina (A) y guanina (G)), el azúcar desoxirribosa y un grupo fosfato, y que, en su estructura básica, el nucleótido está compuesto por un azúcar unido a la base y al fosfato. Sin embargo, Levene pensaba que la cadena era corta y que las bases se repetían en un orden fijo. En 1937 William Astbury produjo el primer patrón de difracción de rayos X que mostraba que el ADN tenía una estructura regular.

La función biológica del ADN comenzó a dilucidarse en 1928, con una serie básica de experimentos de la genética moderna realizados por Frederick Griffith, quien estaba trabajando con cepas "lisas" (S) o "rugosas" (R) de la bacteria Pneumococcus (causante de la neumonía), según la presencia (S) o no (R) de una cápsula azucarada, que es la que confiere virulencia (véase también experimento de Griffith). La inyección de neumococos S vivos en ratones produce la muerte de éstos, y Griffith observó que, si inyectaba ratones con neumococos R vivos o con neumococos S muertos por calor, los ratones no morían. Sin embargo, si inyectaba a la vez neumococos R vivos y neumococos S muertos, los ratones morían, y en su sangre se podían aislar neumococos S vivos. Como las bacterias muertas no pudieron haberse multiplicado dentro del ratón, Griffith razonó que debía producirse algún tipo de cambio o transformación de un tipo bacteriano a otro por medio de una transferencia de alguna sustancia activa, que denominó principio transformante. Esta sustancia proporcionaba la capacidad a los neumococos R de producir una cápsula azucarada y transformarse así en virulentas. En los siguientes 15 años, estos experimentos iniciales se replicaron mezclando distintos tipos de cepas bacterianas muertas por el calor con otras vivas, tanto en ratones (in vivo) como en tubos de ensayo (in vitro). La búsqueda del «factor transformante» que era capaz de hacer virulentas a cepas que inicialmente no lo eran continuó hasta 1944, año en el cual Oswald Avery, Colin MacLeod y Maclyn McCarty realizaron un experimento hoy clásico. Estos investigadores extrajeron la fracción activa (el factor transformante) y, mediante análisis químicos, enzimáticos y serológicos, observaron que no contenía proteínas, ni lípidos no ligados, ni polisacáridos activos, sino que estaba constituido principalmente por "una forma viscosa de ácido desoxirribonucleico altamente polimerizado", es decir, ADN. El ADN extraído de las cepas bacterianas S muertas por el calor lo mezclaron "in vitro" con cepas R vivas: el resultado fue que se formaron colonias bacterianas S, por lo que se concluyó inequívocamente que el factor o principio transformante era el ADN.

A pesar de que la identificación del ADN como principio transformante aún tardó varios años en ser universalmente aceptada, este descubrimiento fue decisivo en el conocimiento de la base molecular de la herencia, y constituye el nacimiento de la genética molecular. Finalmente, el papel exclusivo del ADN en la heredabilidad fue confirmado en 1952 mediante los experimentos de Alfred Hershey y Martha Chase, en los cuales comprobaron que el fago T2 transmitía su información genética en su ADN, pero no en su proteína (véase también experimento de Hershey y Chase).

En cuanto a la caracterización química de la molécula, Chargaff realizó en 1940 algunos experimentos que le sirvieron para establecer las proporciones de las bases nitrogenadas en el ADN. Descubrió que las proporciones de purinas eran idénticas a las de pirimidinas, la "equimolecularidad" de las bases ([A]=[T], [G]=[C]) y el hecho de que la cantidad de G+C en una determinada molécula de ADN no siempre es igual a la cantidad de A+T y puede variar desde el 36 hasta el 70 por ciento del contenido total.6 Con toda esta información y junto con los datos de difracción de rayos X proporcionados por Rosalind Franklin, James Watson y Francis Crick propusieron en 1953 el modelo de la doble hélice de ADN para representar la estructura tridimensional del polímero. En una serie de cinco artículos en el mismo número de Nature se publicó la evidencia experimental que apoyaba el modelo de Watson y Crick. De éstos, el artículo de Franklin y Raymond Gosling fue la primera publicación con datos de difracción de rayos X que apoyaba el modelo de Watson y Crick, y en ese mismo número de Nature también aparecía un artículo sobre la estructura del ADN de Maurice Wilkins y sus colaboradores.

Watson, Crick y Wilkins recibieron conjuntamente, en 1962, después de la muerte de Rosalind Franklin, el Premio Nobel en Fisiología o Medicina. Sin embargo, el debate continúa sobre quién debería recibir crédito por el descubrimiento.

 

Biología celular

La biología celular o bioquímica celular (anteriormente citología, del griego κύτος, que significa ‘célula’) es una disciplina académica que se encarga del estudio de las células en lo que respecta a las propiedades, estructura, funciones, orgánulos que contienen, su interacción con el ambiente y su ciclo vital.

Con la invención del microscopio óptico fue posible observar estructuras nunca antes vistas por el hombre, las células. Esas estructuras se estudiaron más detalladamente con el empleo de técnicas de tinción y de citoquímica y con la ayuda fundamental del microscopio electrónico.

La biología celular se centra en la comprensión del funcionamiento de los sistemas celulares, de cómo estas células se regulan y la comprensión del funcionamiento de sus estructuras. Una disciplina afín es la biología molecular

Estudios estructurales

La primera referencia al concepto de célula data del siglo XVII, cuando el inglés Robert Hooke utilizó este término, para referirse a los pequeños huecos poliédricos que constituían la estructura de ciertos tejidos vegetales como el corcho (y por su parecido con las habitaciones de los sacerdotes llamadas celdas).

No obstante, hasta el siglo XIX no se desarrolla este concepto considerando su estructura interior. Es en este siglo cuando se desarrolla la teoría celular, que reconoce la célula como la unidad básica de estructura y función de todos los seres vivos, idea que constituye desde entonces uno de los pilares de la biología moderna.

Fue esta teoría celular la que impulsó en buena medida las investigaciones biológicas al terreno microscópico, pues las células no son visibles a simple vista. La unidad de medida utilizada es el micrómetro (μm) antes conocida como micra, existiendo células de entre 2 y 20 μm.

La investigación microscópica pronto daría lugar al descubrimiento de la estructura celular interna incluyendo el núcleo, los cromosomas, el aparato de Golgi, las mitocondrias y otros orgánulos celulares, así como la identificación de la relación existente entre la estructura y la función de los orgánulos celulares.

Ya en siglo XX, la introducción del microscopio electrónico reveló detalles de la megaestructura celular, y aparecieron la histoquímica y la citoquímica. También se descubrió la base material de la herencia, con los cromosomas y el ADN, y nació la citogenética.

Estudios bioquímicos

La Biología Celular como tal, surgió como consecuencia de un cambio en la concepción del estudio de los organismos vivos, en tanto éstos mostraban funciones que sobrepasaban lo estructural. Es esencial conocer los procesos de la vida de la célula durante su ciclo celular, como son la nutrición, la respiración, la síntesis de componentes, los mecanismos de defensa, la división celular y la muerte celular.

La historia de la bioquímica como la conocemos hoy en día, viene del siglo XIX cuando una buena parte de la biología y de la química se orientaron a la creación de una nueva disciplina integradora: la química fisiológica hoy conocida como bioquímica.

Podemos entender la bioquímica como una disciplina científica integradora, que aborda el estudio de las biomoléculas y los biosistemas. Integra de esta forma las leyes químico-físicas y la evolución biológica que determinan a los biosistemas y a sus componentes.

Estudios moleculares

La Biología Molecular implica la comprensión de las interacciones de los diferentes sistemas de la célula, lo que incluye muchísimas relaciones, entre ellas las del ADN con el ARN, la síntesis de proteínas, el metabolismo, y cómo todas esas interacciones son reguladas para conseguir un correcto funcionamiento de la célula.

La Biología molecular tiene como objetivo el estudio, desde el punto de vista molecular, de los procesos que se desarrollan en la célula viva. Dos macromoléculas en particular son objeto de su estudio: el ADN y las Proteínas. Esta área específica de estudio está relacionada con otros campos de la Biología Celular, como son la Ingeniería genética y la bioquímica.

La citoquímica constituye un complemento valioso de las técnicas clásicas utilizadas para el estudio de la morfología, bioquímica celular y biología molecular.

Atendiendo a su organización celular, los seres vivos se clasificarían en acelulares (virus, viroides) y celulares, siendo estos últimos a su vez clasificados en Eukaryota|eucariotas y Prokaryota|procariotas.

Campos de estudio

Para alcanzar sus objetivos, los biólogos celulares se ven obligados a estudiar los componentes de la célula a nivel molecular (biología molecular).

Componentes principales del estudio celular:
membrana plasmática
citoesqueleto
núcleo celular
ribosomas
retículo endoplásmico
aparato de Golgi
mitocondrias
cloroplastos
lisosomas
peroxisomas
vacuolas
pared celular
tráfico intracelular de membranas

Notables biólogos celulares o citólogos
Peter Agre
Günter Blobel
Christian de Duve
Robert Hooke
H. Robert Horvitz
Anton van Leeuwenhoek
Peter Dennis Mitchell

Médico

Un médico es un profesional que practica la medicina que intenta mantener y recuperar la salud humana mediante el estudio, el diagnóstico y el tratamiento de la enfermedad o lesión del paciente. En la lengua española, de manera coloquial, se denomina también doctor a estos profesionales, aunque no hayan obtenido el grado de doctorado.  El médico es un profesional altamente calificado en materia sanitaria, que es capaz de dar respuestas generalmente acertadas y rápidas a problemas de salud, mediante decisiones tomadas habitualmente en condiciones de gran incertidumbre, y que precisa de formación continuada a lo largo de toda su vida laboral.

Objetivo

El principal objetivo del médico, y de la Medicina por extensión, es "cuidar la salud del paciente y aliviar su sufrimiento".3 "El médico pocas veces cura, algunas alivia, pero siempre debe consolar".

Motivación

Las razones para ser médico en la actualidad pueden ser de cuatro tipos:

Personales

Son las razones principales y más importantes.
El atractivo social de la profesión.
Acceder a una posición económica más o menos holgada.
Influencia de familiares, amigos, o de los medios de comunicación.
Compromiso con los pacientes y su sufrimiento, con lo concreto e individual.
Planteamientos religiosos, filosóficos o de vida, como la creencia del impacto de la medicina en la equidad.
Rechazo a otras opciones de vida.

Sociales
Lograr un alto prestigio social, un lugar elevado en la escala de clases sociales.
Puede ser un camino de compromiso social para el cambio de las circunstancias que generan enfermedad. Lucha contra los determinantes sociales de la salud, y solidaridad con los afectados.
Puede llegar a ser una forma de rebelión contra la injusticia social.

Científicas
Trabajar en centros que irradien nuevo conocimiento científico, para que cambie la faz del sufrimiento humano.
Dominar una parte poderosa de la ciencia y de la técnica, de enorme atractivo por su impacto en la salud del paciente.
El esfuerzo por la innovación de la organización de servicios, y a la mejora de la investigación aplicada a la atención de los pacientes con los ensayos clínicos, los estudios observacionales y el conjunto que llamamos “medicina basada en pruebas” (Evidence Based Medicine).
El ansia del desarrollo de las ciencias médicas es fundamental, y sirve de acicate a la continua necesidad de formación continuada que caracteriza al médico.
La producción de ética médica, que pone el contrapunto filosófico y deontológico al que hacer del médico clínico.

Prácticas
Puede ser una elección que dé mucha versatilidad a la vida, como ofrecen las diferentes especialidades médicas, los lugares de trabajo y el tiempo dedicado a la profesión.
La remuneración del médico. En general, como médico se recibe una compensación económica que suele estar en la media o por encima de la media de otros profesionales (aunque hay variaciones extremas), y en todo caso ser médico es un medio de vida. La constante es tener ingresos que permiten llevar una vida honrada, con solvencia para hacer frente a formar una familia y criar algunos hijos.

Valores

Las cualidades que debe poseer un médico clínico son:
el trato digno al paciente y a los compañeros.
el control juicioso de la incertidumbre durante el encuentro con el enfermo
la práctica de una ética de la ignorancia (compartir con el paciente nuestras limitaciones científicas)
la práctica de una ética de la negativa (para rechazar aquello que no tiene sentido, firme pero amablemente, de pacientes, jefes y compañeros)
una enorme polivalencia en el limitado tiempo de la atención clínica.

Axiomas médicos

Son reglas generales que se consideran «evidentes» y se aceptan sin requerir demostración previa, tanto en medicina como en enfermería:
Primum non nocere: "Lo primero es no hacer daño".
"No hay enfermedades, sino enfermos". Es un lema clave para el médico, pues indica que el enfermar (el padecer la enfermedad) es mucho más que la enfermedad. Las enfermedades son estados cambiantes mal definidos que cada paciente vive de forma personal.

Memento mori: "Todo el que nace, muere".

Funciones

Las principales funciones del médico son:
Clínica: la atención a los pacientes.
Formación: tanto su propia formación continuada, como el adiestramiento de estudiantes de medicina. Además, de la educación para la salud de los ciudadanos.
Investigación: para conseguir el mejor desarrollo e innovación de la Medicina.
Administración y/o gestión: de los recursos humanos, materiales y financieros disponibles, y de la captación de nuevos apoyos socio-sanitarios.

 

Médico

Un médico es un profesional que practica la medicina que intenta mantener y recuperar la salud humana mediante el estudio, el diagnóstico y el tratamiento de la enfermedad o lesión del paciente. En la lengua española, de manera coloquial, se denomina también doctor a estos profesionales, aunque no hayan obtenido el grado de doctorado.  El médico es un profesional altamente calificado en materia sanitaria, que es capaz de dar respuestas generalmente acertadas y rápidas a problemas de salud, mediante decisiones tomadas habitualmente en condiciones de gran incertidumbre, y que precisa de formación continuada a lo largo de toda su vida laboral.

Objetivo

El principal objetivo del médico, y de la Medicina por extensión, es "cuidar la salud del paciente y aliviar su sufrimiento". "El médico pocas veces cura, algunas alivia, pero siempre debe consolar".

Motivación

Las razones para ser médico en la actualidad pueden ser de cuatro tipos:

Personales

Son las razones principales y más importantes.
El atractivo social de la profesión.
Acceder a una posición económica más o menos holgada.
Influencia de familiares, amigos, o de los medios de comunicación.
Compromiso con los pacientes y su sufrimiento, con lo concreto e individual.
Planteamientos religiosos, filosóficos o de vida, como la creencia del impacto de la medicina en la equidad.
Rechazo a otras opciones de vida.

Sociales
Lograr un alto prestigio social, un lugar elevado en la escala de clases sociales.
Puede ser un camino de compromiso social para el cambio de las circunstancias que generan enfermedad. Lucha contra los determinantes sociales de la salud, y solidaridad con los afectados.
Puede llegar a ser una forma de rebelión contra la injusticia social.

Científicas
Trabajar en centros que irradien nuevo conocimiento científico, para que cambie la faz del sufrimiento humano.
Dominar una parte poderosa de la ciencia y de la técnica, de enorme atractivo por su impacto en la salud del paciente.
El esfuerzo por la innovación de la organización de servicios, y a la mejora de la investigación aplicada a la atención de los pacientes con los ensayos clínicos, los estudios observacionales y el conjunto que llamamos “medicina basada en pruebas” (Evidence Based Medicine).
El ansia del desarrollo de las ciencias médicas es fundamental, y sirve de acicate a la continua necesidad de formación continuada que caracteriza al médico.
La producción de ética médica, que pone el contrapunto filosófico y deontológico al que hacer del médico clínico.

Prácticas
Puede ser una elección que dé mucha versatilidad a la vida, como ofrecen las diferentes especialidades médicas, los lugares de trabajo y el tiempo dedicado a la profesión.
La remuneración del médico. En general, como médico se recibe una compensación económica que suele estar en la media o por encima de la media de otros profesionales (aunque hay variaciones extremas), y en todo caso ser médico es un medio de vida. La constante es tener ingresos que permiten llevar una vida honrada, con solvencia para hacer frente a formar una familia y criar algunos hijos.

Valores

Las cualidades que debe poseer un médico clínico son:
el trato digno al paciente y a los compañeros.
el control juicioso de la incertidumbre durante el encuentro con el enfermo
la práctica de una ética de la ignorancia (compartir con el paciente nuestras limitaciones científicas)
la práctica de una ética de la negativa (para rechazar aquello que no tiene sentido, firme pero amablemente, de pacientes, jefes y compañeros)
una enorme polivalencia en el limitado tiempo de la atención clínica.

Axiomas médicos

Son reglas generales que se consideran «evidentes» y se aceptan sin requerir demostración previa, tanto en medicina como en enfermería:
Primum non nocere: "Lo primero es no hacer daño".
"No hay enfermedades, sino enfermos". Es un lema clave para el médico, pues indica que el enfermar (el padecer la enfermedad) es mucho más que la enfermedad. Las enfermedades son estados cambiantes mal definidos que cada paciente vive de forma personal.

Memento mori: "Todo el que nace, muere".

Funciones

Las principales funciones del médico son:
Clínica: la atención a los pacientes.
Formación: tanto su propia formación continuada, como el adiestramiento de estudiantes de medicina. Además, de la educación para la salud de los ciudadanos.
Investigación: para conseguir el mejor desarrollo e innovación de la Medicina.
Administración y/o gestión: de los recursos humanos, materiales y financieros disponibles, y de la captación de nuevos apoyos socio-sanitarios.

Día Internacional del Médico

En 1946 la Confederación Médica Panamericana acordó conmemorar el 3 de diciembre el "Día Internacional del Médico", en memoria del médico cubano Carlos J. Finlay, descubridor del Aedes aegypti como trasmisor de la fiebre amarilla.

La medicina (del latín medicina, derivado a su vez de mederi, que significa 'curar', 'medicar')1 es la ciencia dedicada al estudio de la vida, la salud, las enfermedades y la muerte del ser humano, e implica ejercer tal conocimiento técnico para el mantenimiento y recuperación de la salud, aplicándolo al diagnóstico, tratamiento y prevención de las enfermedades. La medicina forma parte de las denominadas ciencias de la salud.
La medicina tuvo sus comienzos en la prehistoria, la cual también tiene su propio campo de estudio conocido como "Antropología médica"; se utilizaban plantas, minerales y partes de animales, en la mayoría de las veces estas sustancias eran utilizadas en rituales mágicos por chamanes, sacerdotes, magos, brujos, animistas, espiritualistas o adivinos.

Los datos antiguos encontrados muestran la medicina en diferentes culturas como la medicina Āyurveda de la India, el antiguo Egipto, la antigua China y Grecia. Uno de los primeros reconocidos personajes históricos es Hipócrates quien es también conocido como el padre de la medicina, Aristóteles; supuestamente descendiente de Asclepio, por su familia: los Asclepíades de Bitinia; y Galeno. Posteriormente a la caída de Roma en la Europa Occidental la tradición médica griega disminuyó.

Después de 750 d. C., los musulmanes tradujeron los trabajos de Galeno y Aristóteles al arábigo por lo cual los doctores Islámicos se indujeron en la investigación médica. Cabe mencionar algunas figuras islámicas importantes como Avicena que junto con Hipócrates se le ha sido mencionado también como el padre de la medicina, Abulcasis el padre de la cirugía, Avenzoar el padre de la cirugía experimental, Ibn al-Nafis padre de la fisiología circulatoria, Averroes y Rhazes llamado padre de la pediatría. Ya para finales de la Edad Media posterior a la peste negra, importantes figuras médicas emergieron de Europa como William Harvey y Grabiele Fallopio.

En el pasado la mayor parte del pensamiento médico se debía a lo que habían dicho anteriormente otras autoridades y se veía del modo tal que si fue dicho permanecía como la verdad. Esta forma de pensar fue sobre todo sustituida entre los siglos XIV y XV d. C., tiempo de la pandemia de la "Peste negra.

Asimismo, durante los siglos XV y XVI, una parte de la medicina, la anatomía sufrió un gran avance gracias a la aportación del genio renacentista Leonardo Da Vinci, quien proyecto junto con Marcantonio Della Torre (1481-1511); un médico anatomista de Pavía; uno de los primeros y fundamentales tratados de anatomía, denominado Il libro dell'Anatomia. Aunque la mayor parte de las más de 200 ilustraciones sobre el cuerpo humano que realizó Leonardo Da Vinci para este tratado desaparecieron, se pueden observar algunas de las que sobrevivieron en su Tratado sobre la pintura.

Investigaciones biomédicas premodernas desacreditaron diversos métodos antiguos como el de los "cuatro humores " de origen griego; es en el siglo XIX, con los avances de Leeuwenhoek con el microscopio y descubrimientos de Robert Koch de las transmisiones bacterianas, cuando realmente se vio el comienzo de la medicina moderna. A partir del siglo XIX se vieron grandes cantidades de descubrimientos como el de los antibióticos que fue un gran momento para la medicina; personajes tales como Rudolf Virchow, Wilhelm Conrad Röntgen, Alexander Fleming, Karl Landsteiner, Otto Loewi, Joseph Lister, Francis Crick, Florence Nightingale, Maurice Wilkins, Howard Florey, Frank Macfarlane Burnet, William Williams Keen, William Coley, James D. Watson, Salvador Luria, Alexandre Yersin, Kitasato Shibasaburō, Jean-Martin Charcot, Luis Pasteur, Claude Bernard, Paul Broca, Nikolái Korotkov, William Osler y Harvey Cushing como los más importantes entre otros.

Mientras la medicina y la tecnología se desarrollaban, comenzó a volverse más confiable, como el surgimiento de la farmacología de la herbolaria hasta la fecha diversos fármacos son derivados de plantas como la atropina, warfarina, aspirina, digoxina, taxol etc.; de todas las descubiertas primero fue la arsfenamina descubierta por Paul Ehrlich en 1908 después de observar que las bacterias morían mientras las células humanas no lo hacían.

Las primeras formas de antibióticos fueron las drogas sulfas. Actualmente los antibióticos se han vuelto muy sofisticados. Los antibióticos modernos puede atacar localizaciones fisiológicas específicas, algunas incluso diseñadas con compatibilidad con el cuerpo para reducir efectos secundarios.

Las vacunas por su parte fueron descubiertas por el Dr. Edward Jenner al ver que las ordeñadoras de vacas que contraían el virus de vaccinia al tener contacto con las pústulas eran inmunes a la viruela, lo que constituye el comienzo de la vacunación. Años después Louis Pasteur le otorgó el nombre de vacuna en honor al trabajo de Edward Jenner con las vacas.

Actualmente el conocimiento sobre el genoma humano ha empezado a tener una gran influencia sobre ella, razón por la que se han identificado varios padecimientos ligados a un gen en específico en el cual la Biología celular y la Genética se enfocan para la administración en la práctica médica, aun así, estos métodos aún están en su infancia.

El báculo de Asclepio es utilizado como el símbolo mundial de la medicina. Se trata de una vara con una serpiente enrollada, representando al dios griego Asclepio, o Esculapio para los romanos. Este símbolo es utilizado por organizaciones como la Organización Mundial de la Salud (OMS), la Asociación Americana Médica y de Osteopatía, la Asociación Australiana y Británica Médica y diversas facultades de medicina en todo el mundo que igualmente incorporan esta insignia.

Fines de la Medicina

La Medicina debe aspirar a ser honorable y dirigir su propia vida profesional; ser moderada y prudente; ser asequible y económicamente sostenible; ser justa y equitativa; y a respetar las opciones y la dignidad de las personas. Los valores elementales de la Medicina contribuyen a preservar su integridad frente a las presiones políticas y sociales que defienden unos fines ajenos o anacrónicos. Los fines de la Medicina son:
La prevención de enfermedades y lesiones y la promoción y la conservación de la salud;

son valores centrales, la prevención porque es de sentido común que es preferible prevenir la enfermedad o daño a la salud , cuando ello sea posible. En la promoción; Un propósito de la medicina es ayudar a la gente a vivir de manera más armónica con el medio, un objetivo que debe ser perseguido desde el inicio de la vida y hasta su final.
El alivio del dolor y el sufrimiento causados por males.

El alivio del dolor y del sufrimiento se cuentan entre los deberes más esenciales del médico y constituye uno de los fines tradicionales de la medicina.
La atención y curación de los enfermos y los cuidados a los incurables.

la medicina responde buscando una causa de enfermedad, cuando esto resulta posible la medicina busca curar la enfermedad y restituir el estado de bienestar y normalidad funcional del paciente.El cuidado es la capacidad para conversar y para escuchar de una manera que esté también al tanto de los servicios sociales y redes de apoyo para ayudar a enfermos y familiares.
La evitación de la muerte prematura y la búsqueda de una muerte tranquila.

La medicina, en su contra la muerte, asume como una meta correcta y prioritaria disminuir las muertes prematuras, se trata de considerar como deber primario de la medicina contribuir a que los jóvenes lleguen a la vejez y, cuando ya se ha alcanzado a esa etapa, ayudar a que los ancianos vivan el resto de sus vidas en condiciones de bienestar y dignidad.

Los fines erróneos de la Medicina son:
El uso incorrecto de las técnicas y los conocimientos médicos.
El empleo de información sobre salud pública para justificar la coerción antidemocrática de grandes grupos de personas para que cambien sus comportamientos “insanos”.
La medicina no puede consistir en el bienestar absoluto del individuo, más allá de su buen estado de salud.
Tampoco corresponde a la medicina definir lo que es el bien general para la sociedad.

Práctica de la medicina

Agentes de salud

La medicina no es solo un cuerpo de conocimientos teórico-prácticos, también es una disciplina que idealmente tiene fundamento en un trípode:
El médico, como agente activo en el proceso sanitario;
El enfermo, como agente pasivo, por ello es "paciente"
La entidad nosológica, la enfermedad que es el vehículo y nexo de la relación médico-paciente.

La práctica de la medicina, encarnada en el médico, combina tanto la ciencia como el arte de aplicar el conocimiento y la técnica para ejercer un servicio de salud en el marco de la relación médico-paciente. En relación al paciente, en el marco sanitario, se establecen análogamente también vínculos con otros agentes de salud (enfermeros, farmacéuticos, fisiatras, etc.) que intervienen en el proceso.

Relación médico-paciente

El médico, durante la entrevista clínica, transita un proceso junto con el paciente, donde necesita:
Establecer un vínculo de confianza y seguridad con el paciente (y su entorno también);
Recopilar información sobre la situación del paciente haciendo uso de diferentes herramientas (entrevista y anamnesis, historia clínica, examen físico, interconsulta, análisis complementarios, etc.);
Organizar, analizar y sintetizar esos datos (para obtener orientación diagnóstica);
Diseñar un plan de acción en función de los procesos previos (tratamiento, asesoramiento, etc);
Informar, concienciar y tratar al paciente adecuadamente (implica también acciones sobre su entorno);
Reconsiderar el plan en función del progreso y los resultados esperados según lo planificado (cambio de tratamiento, suspensión, acciones adicionales, etc.);
Dar el alta al momento de resolución de la enfermedad (cuando sea posible), sino propender a medidas que permitan mantener el estatus de salud (recuperación, coadyuvantes, paliativos, etc.).

Toda consulta médica debe ser registrada en un documento conocido como historia clínica, documento con valor legal, educacional, informativo y científico, donde consta el proceder del profesional médico.

Sistema sanitario y salud pública

La práctica de la medicina se ejerce dentro del marco económico, legal y oficial del sistema médico que es parte de los sistemas nacionales de salud pública (políticas sanitarias estatales). Las características bajo las cuales se maneja el sistema sanitario en general y el órgano médico en particular ejercen un efecto significativo sobre cómo el servicio de salud, y la atención sanitaria puede ser aprovechada por la población general.

Una de las variables más importantes para el funcionamiento del sistema se corresponde con el área financiera y el presupuesto que un Estado invierte en materia de salud. Otra variable implica los recursos humanos que articulan las directivas del sistema sanitario.

La otra cara de la moneda en materia de atención médica está dada por el servicio privado de salud. Los honorarios y costos del servicio sanitario corren por cuenta del contratista, siendo de esta forma un servicio generalmente restringido a las clases económicamente solventes. Existen no obstante contratos de seguro médico que permiten acceder a estos servicios sanitarios privados; son, fundamentalmente, de dos tipos:
De cuadro médico: aquellos en los que se accede a los servicios sanitarios de una entidad privada (a su red de médicos y hospitales) pagando una prima mensual y, en ocasiones, un copago por cada tratamiento o consulta al que se accede.
De reembolso: aquellos en los que se accede a cualquier médico u hospital privado y, a cambio de una prima mensual y con unos límites de reembolso, el seguro devuelve un porcentaje de los gastos derivados del tratamiento.

La medicina (del latín medicina, derivado a su vez de mederi, que significa 'curar', 'medicar')1 es la ciencia dedicada al estudio de la vida, la salud, las enfermedades y la muerte del ser humano, e implica ejercer tal conocimiento técnico para el mantenimiento y recuperación de la salud, aplicándolo al diagnóstico, tratamiento y prevención de las enfermedades. La medicina forma parte de las denominadas ciencias de la salud.
La medicina tuvo sus comienzos en la prehistoria, la cual también tiene su propio campo de estudio conocido como "Antropología médica"; se utilizaban plantas, minerales y partes de animales, en la mayoría de las veces estas sustancias eran utilizadas en rituales mágicos por chamanes, sacerdotes, magos, brujos, animistas, espiritualistas o adivinos.

Los datos antiguos encontrados muestran la medicina en diferentes culturas como la medicina Āyurveda de la India, el antiguo Egipto, la antigua China y Grecia. Uno de los primeros reconocidos personajes históricos es Hipócrates quien es también conocido como el padre de la medicina, Aristóteles; supuestamente descendiente de Asclepio, por su familia: los Asclepíades de Bitinia; y Galeno. Posteriormente a la caída de Roma en la Europa Occidental la tradición médica griega disminuyó.

Después de 750 d. C., los musulmanes tradujeron los trabajos de Galeno y Aristóteles al arábigo por lo cual los doctores Islámicos se indujeron en la investigación médica. Cabe mencionar algunas figuras islámicas importantes como Avicena que junto con Hipócrates se le ha sido mencionado también como el padre de la medicina, Abulcasis el padre de la cirugía, Avenzoar el padre de la cirugía experimental, Ibn al-Nafis padre de la fisiología circulatoria, Averroes y Rhazes llamado padre de la pediatría. Ya para finales de la Edad Media posterior a la peste negra, importantes figuras médicas emergieron de Europa como William Harvey y Grabiele Fallopio.

En el pasado la mayor parte del pensamiento médico se debía a lo que habían dicho anteriormente otras autoridades y se veía del modo tal que si fue dicho permanecía como la verdad. Esta forma de pensar fue sobre todo sustituida entre los siglos XIV y XV d. C., tiempo de la pandemia de la "Peste negra.

Asimismo, durante los siglos XV y XVI, una parte de la medicina, la anatomía sufrió un gran avance gracias a la aportación del genio renacentista Leonardo Da Vinci, quien proyecto junto con Marcantonio Della Torre (1481-1511); un médico anatomista de Pavía; uno de los primeros y fundamentales tratados de anatomía, denominado Il libro dell'Anatomia. Aunque la mayor parte de las más de 200 ilustraciones sobre el cuerpo humano que realizó Leonardo Da Vinci para este tratado desaparecieron, se pueden observar algunas de las que sobrevivieron en su Tratado sobre la pintura.

Investigaciones biomédicas premodernas desacreditaron diversos métodos antiguos como el de los "cuatro humores " de origen griego; es en el siglo XIX, con los avances de Leeuwenhoek con el microscopio y descubrimientos de Robert Koch de las transmisiones bacterianas, cuando realmente se vio el comienzo de la medicina moderna. A partir del siglo XIX se vieron grandes cantidades de descubrimientos como el de los antibióticos que fue un gran momento para la medicina; personajes tales como Rudolf Virchow, Wilhelm Conrad Röntgen, Alexander Fleming, Karl Landsteiner, Otto Loewi, Joseph Lister, Francis Crick, Florence Nightingale, Maurice Wilkins, Howard Florey, Frank Macfarlane Burnet, William Williams Keen, William Coley, James D. Watson, Salvador Luria, Alexandre Yersin, Kitasato Shibasaburō, Jean-Martin Charcot, Luis Pasteur, Claude Bernard, Paul Broca, Nikolái Korotkov, William Osler y Harvey Cushing como los más importantes entre otros.

Mientras la medicina y la tecnología se desarrollaban, comenzó a volverse más confiable, como el surgimiento de la farmacología de la herbolaria hasta la fecha diversos fármacos son derivados de plantas como la atropina, warfarina, aspirina, digoxina, taxol etc.; de todas las descubiertas primero fue la arsfenamina descubierta por Paul Ehrlich en 1908 después de observar que las bacterias morían mientras las células humanas no lo hacían.

Las primeras formas de antibióticos fueron las drogas sulfas. Actualmente los antibióticos se han vuelto muy sofisticados. Los antibióticos modernos puede atacar localizaciones fisiológicas específicas, algunas incluso diseñadas con compatibilidad con el cuerpo para reducir efectos secundarios.

Las vacunas por su parte fueron descubiertas por el Dr. Edward Jenner al ver que las ordeñadoras de vacas que contraían el virus de vaccinia al tener contacto con las pústulas eran inmunes a la viruela, lo que constituye el comienzo de la vacunación. Años después Louis Pasteur le otorgó el nombre de vacuna en honor al trabajo de Edward Jenner con las vacas.

Actualmente el conocimiento sobre el genoma humano ha empezado a tener una gran influencia sobre ella, razón por la que se han identificado varios padecimientos ligados a un gen en específico en el cual la Biología celular y la Genética se enfocan para la administración en la práctica médica, aun así, estos métodos aún están en su infancia.

El báculo de Asclepio es utilizado como el símbolo mundial de la medicina. Se trata de una vara con una serpiente enrollada, representando al dios griego Asclepio, o Esculapio para los romanos. Este símbolo es utilizado por organizaciones como la Organización Mundial de la Salud (OMS), la Asociación Americana Médica y de Osteopatía, la Asociación Australiana y Británica Médica y diversas facultades de medicina en todo el mundo que igualmente incorporan esta insignia.

Fines de la Medicina

La Medicina debe aspirar a ser honorable y dirigir su propia vida profesional; ser moderada y prudente; ser asequible y económicamente sostenible; ser justa y equitativa; y a respetar las opciones y la dignidad de las personas. Los valores elementales de la Medicina contribuyen a preservar su integridad frente a las presiones políticas y sociales que defienden unos fines ajenos o anacrónicos. Los fines de la Medicina son:
La prevención de enfermedades y lesiones y la promoción y la conservación de la salud;

son valores centrales, la prevención porque es de sentido común que es preferible prevenir la enfermedad o daño a la salud , cuando ello sea posible. En la promoción; Un propósito de la medicina es ayudar a la gente a vivir de manera más armónica con el medio, un objetivo que debe ser perseguido desde el inicio de la vida y hasta su final.
El alivio del dolor y el sufrimiento causados por males.

El alivio del dolor y del sufrimiento se cuentan entre los deberes más esenciales del médico y constituye uno de los fines tradicionales de la medicina.
La atención y curación de los enfermos y los cuidados a los incurables.

la medicina responde buscando una causa de enfermedad, cuando esto resulta posible la medicina busca curar la enfermedad y restituir el estado de bienestar y normalidad funcional del paciente.El cuidado es la capacidad para conversar y para escuchar de una manera que esté también al tanto de los servicios sociales y redes de apoyo para ayudar a enfermos y familiares.
La evitación de la muerte prematura y la búsqueda de una muerte tranquila.

La medicina, en su contra la muerte, asume como una meta correcta y prioritaria disminuir las muertes prematuras, se trata de considerar como deber primario de la medicina contribuir a que los jóvenes lleguen a la vejez y, cuando ya se ha alcanzado a esa etapa, ayudar a que los ancianos vivan el resto de sus vidas en condiciones de bienestar y dignidad.

Los fines erróneos de la Medicina son:
El uso incorrecto de las técnicas y los conocimientos médicos.
El empleo de información sobre salud pública para justificar la coerción antidemocrática de grandes grupos de personas para que cambien sus comportamientos “insanos”.
La medicina no puede consistir en el bienestar absoluto del individuo, más allá de su buen estado de salud.
Tampoco corresponde a la medicina definir lo que es el bien general para la sociedad.

Práctica de la medicina

Agentes de salud

La medicina no es solo un cuerpo de conocimientos teórico-prácticos, también es una disciplina que idealmente tiene fundamento en un trípode:
El médico, como agente activo en el proceso sanitario;
El enfermo, como agente pasivo, por ello es "paciente"
La entidad nosológica, la enfermedad que es el vehículo y nexo de la relación médico-paciente.

La práctica de la medicina, encarnada en el médico, combina tanto la ciencia como el arte de aplicar el conocimiento y la técnica para ejercer un servicio de salud en el marco de la relación médico-paciente. En relación al paciente, en el marco sanitario, se establecen análogamente también vínculos con otros agentes de salud (enfermeros, farmacéuticos, fisiatras, etc.) que intervienen en el proceso.

Relación médico-paciente

El médico, durante la entrevista clínica, transita un proceso junto con el paciente, donde necesita:
Establecer un vínculo de confianza y seguridad con el paciente (y su entorno también);
Recopilar información sobre la situación del paciente haciendo uso de diferentes herramientas (entrevista y anamnesis, historia clínica, examen físico, interconsulta, análisis complementarios, etc.);
Organizar, analizar y sintetizar esos datos (para obtener orientación diagnóstica);
Diseñar un plan de acción en función de los procesos previos (tratamiento, asesoramiento, etc);
Informar, concienciar y tratar al paciente adecuadamente (implica también acciones sobre su entorno);
Reconsiderar el plan en función del progreso y los resultados esperados según lo planificado (cambio de tratamiento, suspensión, acciones adicionales, etc.);
Dar el alta al momento de resolución de la enfermedad (cuando sea posible), sino propender a medidas que permitan mantener el estatus de salud (recuperación, coadyuvantes, paliativos, etc.).

Toda consulta médica debe ser registrada en un documento conocido como historia clínica, documento con valor legal, educacional, informativo y científico, donde consta el proceder del profesional médico.

Sistema sanitario y salud pública

La práctica de la medicina se ejerce dentro del marco económico, legal y oficial del sistema médico que es parte de los sistemas nacionales de salud pública (políticas sanitarias estatales). Las características bajo las cuales se maneja el sistema sanitario en general y el órgano médico en particular ejercen un efecto significativo sobre cómo el servicio de salud, y la atención sanitaria puede ser aprovechada por la población general.

Una de las variables más importantes para el funcionamiento del sistema se corresponde con el área financiera y el presupuesto que un Estado invierte en materia de salud. Otra variable implica los recursos humanos que articulan las directivas del sistema sanitario.

La otra cara de la moneda en materia de atención médica está dada por el servicio privado de salud. Los honorarios y costos del servicio sanitario corren por cuenta del contratista, siendo de esta forma un servicio generalmente restringido a las clases económicamente solventes. Existen no obstante contratos de seguro médico que permiten acceder a estos servicios sanitarios privados; son, fundamentalmente, de dos tipos:
De cuadro médico: aquellos en los que se accede a los servicios sanitarios de una entidad privada (a su red de médicos y hospitales) pagando una prima mensual y, en ocasiones, un copago por cada tratamiento o consulta al que se accede.
De reembolso: aquellos en los que se accede a cualquier médico u hospital privado y, a cambio de una prima mensual y con unos límites de reembolso, el seguro devuelve un porcentaje de los gastos derivados del tratamiento.

Ética médica

La ética es la encargada de discutir y fundamentar reflexivamente ese conjunto de principios o normas que constituyen nuestra moral. La deontología médica es el conjunto de principios y reglas éticas que han de inspirar y guiar la conducta profesional del médico. Los deberes que se imponen obligan a todos los médicos en el ejercicio de su profesión, independientemente de la modalidad.

Especialidades médicas

Alergología
Análisis clínicos
Anatomía patológica
Anestesiología y reanimación
Angiología y cirugía vascular
Bioquímica clínica
Cardiología
Cirugía cardiovascular
Cirugía general y del aparato digestivo
Cirugía oral y maxilofacial
Cirugía ortopédica y traumatología
Cirugía pediátrica
Cirugía plástica
Cirugía torácica
Dermatología
Endocrinología y nutrición
Epidemiología
Estomatología y odontología
Farmacología clínica
Gastroenterología
Genética
Geriatría
Ginecología
Hematología
Hepatología
Hidrología médica
Infectología
Inmunología
Medicina de emergencia
Medicina del trabajo
Medicina deportiva
Medicina familiar y comunitaria
Medicina física y rehabilitación
Medicina forense
Medicina intensiva
Medicina interna
Medicina nuclear
Medicina preventiva
Microbiología y parasitología
Nefrología
Neonatología
Neumología
Neurocirugía
Neurofisiología clínica
Neurología
Obstetricia
Oftalmología
Oncología médica
Oncología radioterápica
Otorrinolaringología
Pediatría
Proctología
Psiquiatría
Radiología o radiodiagnóstico
Reumatología
Salud pública
Traumatología
Toxicología
Urología

Sociedades científicas

Los médicos se agrupan en sociedades o asociaciones científicas, que son organizaciones sin fines de lucro, donde se ofrece formación médica continuada en sus respectivas especialidades, y se apoyan los estudios de investigación científica.

Colegios de médicos

Un Colegio Médico es una asociación gremial que reúne a los médicos de un entorno geográfico concreto o por especialidades. Actúan como salvaguarda de los valores fundamentales de la profesión médica: la deontología y el código ético. Además de llevar la representación en exclusiva a nivel nacional e internacional de los médicos colegiados, tiene como función la ordenación y la defensa de la profesión médica. En la mayoría de los países la colegiación suele ser obligatoria.

Formación universitaria

La educación médica, lejos de estar estandarizada, varía considerablemente de país a país. Sin embargo, la educación para la formación de profesionales médicos implica un conjunto de enseñanzas teóricas y prácticas generalmente organizadas en ciclos que progresivamente entrañan mayor especialización.

Competencias básicas de un estudiante de medicina

Las cualidades y motivaciones iniciales que debe poseer un estudiante de Medicina son:
Interés por las ciencias de la salud
Organizador de acciones a largo plazo
Habilidad en la manipulación precisa de instrumentos
Capacidad de servicio y relación personal
Sentido de la ética y la responsabilidad
Personalidad inquieta y crítica, con ganas de renovar planteamientos y actitudes
Motivación para desarrollar actividades médicas.

Materias básicas

La siguiente es una lista de las materias básicas de formación en la carrera de medicina:
Anatomía humana: es el estudio de la estructura física (morfología macroscópica) del organismo humano.
Anatomía patológica: estudio de las alteraciones morfológicas que acompañan a la enfermedad.
Bioestadística: aplicación de la estadística al campo de la medicina en el sentido más amplio; los conocimientos de estadística son esenciales en la planificación, evaluación e interpretación de la investigación.
Bioética: campo de estudio que concierne a la relación entre la biología, la ciencia la medicina y la ética.
Biofísica: es el estudio de la biología con los principios y métodos de la física.
Biología: ciencia que estudia los seres vivos.
Biología molecular
Bioquímica: estudio de la química en los organismos vivos, especialmente la estructura y función de sus componentes.
Cardiología: estudio de las enfermedades del corazón y del sistema cardiovascular.
Citología (o biología celular): estudio de la célula en condiciones fisiológicas.
Dermatología: estudio de las enfermedades de la piel y sus anexos.
Embriología: estudio de las fases tempranas del desarrollo de un organismo.
Endocrinología: estudio de las enfermedades de las glándulas endócrinas.
Epidemiología clínica: El uso de la mejor evidencia y de las herramientas de la medicina basada en la evidencia (MBE) en la toma de decisiones a la cabecera del enfermo.
Farmacología: es el estudio de los fármacos y su mecanismo de acción.
Fisiología: estudio de las funciones normales del cuerpo y su mecanismo íntimo de regulación.
Gastroenterología: estudio de las enfermedades del tubo digestivo y glándulas anexas.
Genética: estudio del material genético de la célula.
Ginecología y obstetricia: estudio de las enfermedades de la mujer, el embarazo y sus alteraciones.
Histología: estudio de los tejidos en condiciones fisiológicas.
Historia de la medicina: estudio de la evolución de la medicina a lo largo de la historia.
Neumología: estudio de las enfermedades del aparato respiratorio.
Neurología: estudio de las enfermedades del sistema nervioso.
Otorrinolaringología: estudio de las enfermedades de oídos, naríz y garganta.
Patología: estudio de las enfermedades en su amplio sentido, es decir, como procesos o estados anormales de causas conocidas o desconocidas. La palabra deriva de pathos, vocablo de muchas acepciones, entre las que están: «todo lo que se siente o experimenta, estado del alma, tristeza, pasión, padecimiento, enfermedad». En la medicina, pathos tiene la acepción de «estado anormal duradero como producto de una enfermedad», significado que se acerca al de «padecimiento».
Patología médica: una de las grandes ramas de la medicina. Es el estudio de las patologías del adulto y tiene múltiples subespecialidades que incluyen la cardiología, la gastroenterología, la nefrología, la dermatología y muchas otras.
Patología quirúrgica: incluye todas las especialidades quirúrgicas de la medicina: la cirugía general, la urología, la cirugía plástica, la cirugía cardiovascular y la ortopedia entre otros.
Pediatría: estudio de las enfermedades que se presentan en los niños y adolescentes.
Psicología médica: estudio desde el punto de vista de la medicina de las alteraciones psicológicas que acompañan a la enfermedad.
Psiquiatría: estudio de las enfermedades de la mente.
Semiología clínica: estudia los síntomas y los signos de las enfermedades, como se agrupan en síndromes, con el objetivo de construir el diagnóstico. Utiliza como orden de trabajo lo conocido como método clínico. Este método incluye el interrogatorio, el examen físico, el análisis de los estudios de laboratorio y de Diagnóstico por imágenes. El registro de esta información se conoce como Historia Clínica.
Traumatología y ortopedia: estudio de las enfermedades traumáticas (accidentes) y alteraciones del aparato musculoesquelético.

Materias relacionadas
Antropología médica: estudia las formas antiguas y actuales de curación en diferentes comunidades, que no necesariamente siguen lo establecido por la medicina basada en conocimientos occidentales e institucionalizados. Se analizan las influencias de los distintos usos y costumbres de las comunidades para la toma de decisiones respecto al mejoramiento y prevención de la salud y al tratamiento de las enfermedades.
Fisioterapia: es el arte y la ciencia de la prevención, tratamiento y recuperación de enfermedades y lesiones mediante el uso de agentes físicos, tales como el masaje, el agua, el movimiento, el calor o la electricidad.
Logopedia: es una disciplina que engloba el estudio, prevención, evaluación, diagnóstico y tratamiento de las patologías del lenguaje (oral, escrito y gestual) manifestadas a través de trastornos de la voz, el habla, la comunicación, la audición y las funciones orofaciales.
Nutrición: es el estudio de la relación entre la comida y bebida y la salud o la enfermedad, especialmente en lo que concierne a la determinación de una dieta óptima. El tratamiento nutricional es realizado por dietistas y prescrito fundamentalmente en diabetes, enfermedades cardiovasculares, enfermedades relacionadas con el peso y alteraciones en la ingesta, alergias, malnutrición y neoplasias.

En España

Los estudios de medicina en España y en muy pocos países de la Unión Europea tienen una duración de 6 años para la obtención del grado académico y entre 4 y 6 para el posgrado, lo que supone un total de 11 o 12 años de estudio para la formación completa.

El grado de medicina tiene 2 ciclos de 3 años cada uno. Los dos primeros años se dedican al estudio del cuerpo humano en estado de salud, así como de las ciencias básicas (Física, Estadística, Historia de la Medicina, Psicología, Bioquímica, Genética...). El tercer año se dedica a los estudios de laboratorio y a la Patología General médica y quirúrgica. Los 3 años del segundo ciclo suponen un estudio general de todas y cada una de las especialidades médicas, incluyendo muchas asignaturas prácticas en los Hospitales Clínicos asociados a las Facultades de Medicina.

Una vez terminado el grado, los estudiantes reciben el título de Médico y deben colegiarse en el Colegio Médico de la provincia en la que vayan a ejercer. Una vez colegiados, pueden recetar y abrir clínicas por cuenta propia, así como trabajar para clínicas privadas, pero no pueden trabajar en el Sistema Nacional de Salud.

La formación especializada se adquiere en los estudios de posgrado. Existen 50 especialidades médicas que funcionan como títulos de Posgrado, siguiendo la estructura de máster y doctorado. Estos programas de posgrado, conocidos como formación MIR, tienen una duración de 3 o 6 años.

Para el acceso a uno de estos programas de posgrado, los graduados o licenciados en medicina realizan un examen a nivel nacional conocido como Examen MIR en régimen de concurrencia competitiva. La nota se calcula a partir de la media del expediente de los estudios de grado o licenciatura del alumno (ponderado un 25 %) y el resultado del Examen MIR (75 %).

El aspirante con mayor nota tiene a su disposición todos los programas de formación de todos los hospitales de la nación, el segundo todos menos la plaza que haya elegido el primero, y así sucesivamente.

Previa realización de un trabajo de investigación, el médico recibe el título de doctor y puede ejercer tanto por cuenta propia como ajena en los servicios médicos públicos y privados de España, como facultativo de la especialidad en la que se haya doctorado.

Controversias

Los siguientes son algunos de los temas que mayor controversia han generado en relación con la profesión o la práctica médicas:
El filósofo Iván Illich atacó en profundidad la medicina contemporánea occidental en Némesis médica, publicado por primera vez en 1975. Argumentó que la medicalización durante décadas de muchas vicisitudes de la vida (como el nacimiento y la muerte) a menudo causan más daño que beneficio y convierten a mucha gente en pacientes de por vida. Llevó a cabo estudios estadísticos para demostrar el alcance de los efectos secundarios y la enfermedad inducida por los medicamentos en las sociedades industriales avanzadas, y fue el primero en divulgar la noción de iatrogenia.
Se han descrito críticamente las condiciones de hostigamiento laboral a las que se ven enfrentados los estudiantes de medicina en diferentes momentos durante sus estudios en los hospitales.


Atención primaria de salud
Bioética
Derecho a la vida
Enciclopedia médica
Glosario de términos médicos
Historia clínica
Historia clínica electrónica
Historia de la medicina
Historia de la Medicina General en España
Juramento Hipocrático
Medicina alternativa
Medicina aiurvédica
Medicina china tradicional
Médico
Organización Médica Colegial de España
Paciente
Semiología clínica
Anexo:Cronología de la medicina y de la tecnología médica
Medicina de la conservación
Medicina en los sellos postales

Medicamento

Un medicamento es uno o más fármacos, integrados en una forma farmacéutica, presentado para expendio y uso industrial o clínico, y destinado para su utilización en las personas o en los animales, dotado de propiedades que permitan el mejor efecto farmacológico de sus componentes con el fin de prevenir, aliviar o mejorar el estado de salud de las personas enfermas, o para modificar estados fisiológicos.

Desde las más antiguas civilizaciones el hombre ha utilizado como forma de alcanzar mejoría en distintas enfermedades productos de origen vegetal, mineral, animal o en los últimos tiempos sintéticos. El cuidado de la salud estaba en manos de personas que ejercen la doble función de médicos y farmacéuticos. Son en realidad médicos que preparan sus propios remedios curativos, llegando alguno de ellos a alcanzar un gran renombre en su época, como es el caso del griego Galeno (130-200 d.C.). De él proviene el nombre de la Galénica, como la forma adecuada de preparar, dosificar y administrar los fármacos. En la cultura romana existían numerosas formas de administrar las sustancias utilizadas para curar enfermedades. Así, se utilizaban los electuarios como una mezcla de varios polvos de hierbas y raíces medicinales a los que se les añadía una porción de miel fresca. La miel además de ser la sustancia que sirve como vehículo de los principios activos, daba mejor sabor al preparado. En ocasiones se usaba azúcar. También se utilizaba un jarabe, el cual ya contenía azúcar disuelta, en vez de agua y el conjunto se preparaba formando una masa pastosa. Precisamente Galeno hizo famosa la gran triaca a la que dedicó una obra completa, y que consistía en un electuario que llegaba a contener más de 60 principios activos diferentes. Por la importancia de Galeno en la Edad Media, se hizo muy popular durante esta época dejando de estar autorizada para su uso en España en pleno siglo XX.

Es precisamente en la Edad Media donde comienza su actividad el farmacéutico separado del médico. En su botica realiza sus preparaciones magistrales, entendidas como la preparación individualizada para cada paciente de los remedios prescritos, y se agrupan en gremios junto a los médicos. En el renacimiento se va produciendo una separación más clara de la actividad farmacéutica frente a médicos, cirujanos y especieros, mientras que se va produciendo una revolución en el conocimiento farmacéutico que se consolida como ciencia en la edad moderna. La formulación magistral es la base de la actividad farmacéutica conjuntamente con la formulación oficinal, debido al nacimiento y proliferación de farmacopeas y formularios, y esta situación continúa hasta la segunda mitad del siglo XIX.

A partir de este momento empiezan a aparecer los específicos, que consistían en medicamentos preparados industrialmente por laboratorios farmacéuticos. Es así, que las formas galénicas no adquirirán verdadero protagonismo hasta alrededor de 1940, cuando la industria farmacéutica se desarrolla y éstas comienzan a fabricarse en grandes cantidades. Desde entonces hasta hoy en día las maneras en que se presentan los medicamentos han evolucionado y la diversidad que encontramos en el mercado es muy amplia.

Forma galénica o forma farmacéutica es la disposición individualizada a que se adaptan los fármacos (principios activos) y excipientes (materia farmacológicamente inactiva) para constituir un medicamento.5 O dicho de otra forma, la disposición externa que se da a las sustancias medicamentosas para facilitar su administración.

El primer objetivo de las formas galénicas es normalizar la dosis de un medicamento, por ello, también se las conoce como unidades posológicas. Al principio, se elaboraron para poder establecer unidades que tuvieran una dosis fija de un fármaco con el que se pudiera tratar una determinada patología.

La importancia de la forma farmacéutica reside en que determina la eficacia del medicamento, ya sea liberando el principio activo de manera lenta, o en su lugar de mayor eficiencia en el tejido diana, evitar daños al paciente por interacción química, solubilizar sustancias insolubles, mejorar sabores, mejorar aspecto, etc.

Una prueba de paternidad es un estudio genético que tiene como objeto determinar el vínculo genético ascendente en primer grado entre un individuo y su genitor masculino, o su genitor femenino en el caso de existir duda si el individuo fue cambiado en alguna situación extraña.

Grados de certeza

En 1921 Ottenberg decidió utilizar el grupo sanguíneo ABO para demostrar la paternidad. Pero este método daba un margen de error importante por lo que servía exclusivamente para la exclusión de la paternidad pero no para la confirmación.

El ser humano, al tener reproducción sexual, hereda un alelo de la madre y otro del padre. La prueba de paternidad genética se basa en comparar el ADN nuclear de ambos. Para determinar estadísticamente la exactitud de la prueba, se calculó el índice de paternidad, el cual determinaba la probabilidad de que existiera otra persona con el mismo perfil genético.

Las investigaciones de ADN permitieron usar los marcadores genéticos en la secuencia de nucelótidos del ADN genómico. En 1985 se descubrieron los minisatélites formados por secuencias de nucleótidos que se repiten en número variable y gracias a los multiloci y la técnica de Southern blots en 1993 se llegó a estudios genéticos del ADN que permiten saber quien era el padre genético con una certeza de 0,99998 (del 99,998%).

Más tarde se descubrieron marcadores más específicos de secuencia del ADN que permitieron una certeza del 99,9999% de saber quien es el padre genético, siempre y cuando se tenga una muestra genética del posible padre y del supuesto hijo o hija.

Los marcadores que más se utilizan son las llamadas "huellas digitales" del ácido desoxirribonucleico, que son variaciones que se heredan en las longitudes del ADN repetitivo.

La prueba de análisis de ADN tiene alta confiabilidad pero carece de certeza. La probabilidad de certeza se relaciona con la probabilidad estadística de que dos personas tengan las mismas huellas de ADN, como sucede, por ejemplo, en los gemelos. La seguridad depende de cuantos marcadores se comparen y eso varía según el caso y lo que se quiere buscar o probar. También depende de que comunes sean esos mismos marcadores en la población estudiada. No existe una certeza del 100% por eso se considera una probabilidad del 99%.

Cuando no se cuenta con muestras del presunto padre, se puede obtener un índice de paternidad utilizando muestras de los padres paternos. También es posible obtener muestras de prenatales mediante procedimiento de amniocentesis y Vellosidades coriónicas.

La prueba de paternidad se utiliza mucho en animales.

El genoma mitocondrial (ADN mitocondrial, ADNmt/ADNm o mtDNA/mDNA en inglés) es el material genético de las mitocondrias, los orgánulos que generan energía para la célula. El ADN mitocondrial se reproduce por sí mismo semi-autónomamente cuando la célula eucariota se divide.

El ADN mitocondrial fue descubierto en 1963, por Margit M. K. Nass y Sylvan Nass utilizando microscopia electrónica y un marcador sensitivo al ADN mitocondrial. Evolutivamente el ADN mitocondrial, probablemente desciende de genomas circulares, que fueron englobadas por un antiguo ancestro de las células eucarióticas.

Características

Este ADN, al igual que los ADN bacterianos, es una molécula bicatenaria, circular, cerrada, sin extremos (cromosoma mitocondrial). En los seres humanos tiene un tamaño de 16.569 pares de bases, conteniendo un pequeño número de genes, distribuidos entre la cadena H (de heavy, pesada en inglés y la cadena L (de light, ligera), debido a su diferente densidad cuando son centrifugadas en gradiente de CsCl.

El número de genes en el ADN mitocondrial es de 37,5 frente a los 20.000 - 25.000 genes del ADN cromosómico nuclear humanos. Codifica dos ARN ribosómicos, 22 ARN de transferencia y 13 proteínas que participan en la fosforilación oxidativa. El cromosoma mitocondrial se organiza en "nucleoides", de tamaño variable y de unos 0,068 nanómetros de tamaño en humanos, y formados por entre 5-7 cromosomas y algunas proteínas, como el factor de transcripción mitocondrial A, la proteína de unión a ADN mitocondrial de cadena sencilla y la helicasa Twinkle. Su número por mitocondria es muy variable, pero su distribución se realiza a intervalos fijos, y muchos de ellos parecen localizarse en los "tubos mitocondriales". Parece ser que los nucleoides mitocondriales podrían tener un comportamiento "en capas", llevando a cabo la replicación en su centro, mientras que en la periferia sitúan la traducción de las proteínas necesarias para la cadena respiratoria. El número de tales nucleoides sería de varios cientos (400-800) en células de cultivo, y mucho menores en otras especies en que su tamaño es mayor.

El ADN mitocondrial está en replicación constante, independientementemente del ciclo y del tipo celular. Se piensa que tiene lugar de forma asíncrona, es decir, que tiene lugar en las dos cadenas en tiempos diferentes y con dos orígenes distintos hacia direcciones contrarias. El comienzo tendría lugar en el origen de la cadena pesada, situado en el bucle D, y replicaría ésta tomando como molde la cadena ligera. Cuando se alcanza el segundo origen, situado a dos tercios de distancia del primero, comienza la segunda ronda de replicación en sentido opuesto. Se ha propuesto un nuevo sistema de replicación que coexistiría con el primero. Sería bidireccional y comportaría una coordinación entre hebras directas y retrasadas. En la replicación en mamíferos estarían involucradas la polimerasa γ y la helicasa twinkle.

El ADN mitocondrial está sometido a un importante estrés por su proximidad con los centros de producción de radicales libres de oxígeno, de forma que disponen de una variada y compleja maquinaria de reparación, lo cual incluye diversas formas de recombinación, tanto homóloga como inhomóloga.

Origen filogenético

El genoma mitocondrial de los eucariotas se originó probablemente tras la endocitosis de una eubacteria aeróbica y la subsecuente transferencia sucesiva de muchos genes hacia el genoma nuclear.

Esta hipótesis surgió debido a que la organización del genoma mitocondrial es radicalmente diferente del genoma nuclear. Los genomas mitocondriales presentan varias características de los genomas procariotas como:
Pequeño en tamaño.
Ausencia de intrones.
Porcentaje muy elevado de ADN codificante.
Falta generalizada de secuencias repetidas y genes de rARN comparativamente pequeños, parecidos a los de procariotas.

La evolución del código genético mitocondrial es probablemente el resultado de una presión de selección reducida en respuesta a una capacidad codificante muy disminuida.

Tasa de mutación del ADN mitocondrial

El ADN mitocondrial codifica 13 proteínas involucradas en la producción de energía celular y procesos de fosforilación oxidativa. Por lo tanto, el entorno que rodea la mitocondria y el ADN mitocondrial está expuesto al daño oxidativo producido por los radicales libres generados en ese metabolismo. Si a esto se le añade el hecho de que el material genético de las mitocondrias no está protegido por histonas como lo está el ADN nuclear, y que los mecanismos de reparación de daños el ADN son poco eficientes en las mitocondrias, obtenemos como resultado que la tasa de mutación aumenta hasta ser 10 veces mayor que la del genoma nuclear.

Herencia

El ADN mitocondrial humano se hereda sólo por vía materna. Según esta concepción, cuando un espermatozoide fecunda un óvulo penetra el núcleo y su cola junto con sus mitocondrias son destruidos en el óvulo materno. Por lo tanto, en el desarrollo del cigoto sólo intervendrían las mitocondrias contenidas en el óvulo.  Sin embargo, se ha demostrado que las mitocondrias del espermatozoide pueden ingresar al óvulo. Según algunos autores el ADN mitocondrial del padre puede perdurar en algunos tejidos, como los músculos. Según otros, no llega a heredarse al ser marcado por ubiquitinación y degradado.

Usos

El ADN mitocondrial puede ser usado para identificar individuos junto con otra evidencia. También es usado por laboratorios forenses para caracterizar viejas muestras de esqueleto humano. Distinto que el ADN nuclear, el ADN mitocondrial no sirve para identificar individuos sin ambigüedad, pero si para detectar parentescos entre grupos de individuos; es usado entonces para comparaciones entre personas desaparecidas y restos no identificados y sus familiares.

ADNmt para determinar parentescos

El ADN mitocondrial humano tiene características únicas que lo hacen muy apropiado para estudios microevolutivos: la herencia del genoma mitocondrial se realiza exclusivamente por la vía materna, sin recombinarse; hay un fragmento en este genoma de 400pb (pares de bases) altamente polimórfico, y posee una alta frecuencia de mutaciones (5 a 10 veces mayor que el ADN nuclear).

Este ADN se puede extraer de muestras de cualquier tejido, incluso de la sangre y del tejido óseo. Gracias a su presencia en el hueso se puede obtener el genoma de individuos ya muertos desde hace muchos años. El análisis de la secuencia genómica se usa para estudiar las relaciones filogenéticas, no sólo en humanos sino, también en muchos otros organismos. Por este motivo se utiliza para determinar variabilidad en poblaciones naturales (para ver si hay o no endogamia), información útil para la conservación de especies en peligro de extinción.

Otras aplicaciones

Hay estudios de investigación que utilizan genes mitocondriales que pueden ocasionar algún tipo de enfermedad. Algunos investigadores defienden que es posible que la tendencia a la obesidad se herede por genes mitocondriales de vía materna.[cita requerida] Este descubrimiento supone una vía de actuación contra este problema si se consiguiera regular el ADN mitocondrial con ciertos fármacos. El genoma mitocondrial posee infinidad de ventajas para estudiar relaciones evolutivas: Debido a su menor tamaño, el estudio del ADNmt es más fácil que el del ADN nuclear; además se puede extraer en grandes cantidades, porque cada célula tiene varias mitocondrias. El ADNmt evoluciona más rápido y no se recombina, pasando intacto entre generaciones salvo por las mutaciones; facilitando la identificación de las relaciones entre organismos muy parecidos.

Estudios de polimorfismo en el genoma humano

Momias de Chile

En el área de la arqueología, antropología y genética se han realizado un sinnúmero de aportaciones y descubrimientos, que han ayudado a descifrar enigmas de cientos de años a través del ADN mitocondrial. Éste es el caso de unas momias encontradas en el norte de Chile, en los valles de Azapa, Tarapacá y Camarones en la región de Tarapacá, cuyo análisis permitió descubrir la procedencia de los pobladores antiguos de esta zona.

Después de preparar debidamente las muestras descontaminándolas y realizando un proceso de sumo cuidado para evitar perder estas valiosas muestras Moraga, et al. (2001) realizaron una amplificación por medio de polymerase chain reaction, o mejor conocido como PCR.

En conclusión del análisis de las momias se encontró que de las 42 muestras, 32 pudieron dar el rendimiento necesario para la amplificación exitosa, considerando que para la antigüedad de estas muestras un rendimiento de 76,2 por ciento es más alto que muchos otros investigadores.

Población chilena

Así como existen investigaciones de restos antiguos para comprender su orígenes, también existen estudios basados en poblaciones vivas que a través del polimorfismo se pueden obtener su orígenes étnicos por vía materna. Para estudiar la procedencia de la población chilena se seleccionaron 120 individuos de Arica y de origen atacameño de San Pedro de Atacama y localidades cercanas, y otro grupo de 162 individuos de Santiago, escogidos aleatoriamente. Los investigadores concluyeron que el 84% de las muestras contenían haplogrupos mitocondriales indígenas, superior a lo calculado según marcadores nucleares. Es decir, que el principal aporte materno a los genes de la población actual de Santiago fue indígena, mientras que el aporte paterno fue europeo.

Población puertorriqueña

Otro estudio de polimorfismo en la población fue en Puerto Rico; “En los últimos años, el análisis mitocondrial del ácido desoxirribonucleico (ADN) (ADNmt) ha demostrado ser una poderosa herramienta para los estudios evolutivos de la población la estructura genética.” Se presume que las primeras personas que habitaron la isla provenían de Norte América, probablemente de Florida y conformaron un grupo primitivo que se conocía como arcaicos. Luego llegaron nativos de América del Sur, los Arawakan. Esto dio lugar a la formación de los indios taínos alrededor de 100 años antes de la colonización realizada por Colón, que provocó la extinción del grupo indígena.

Se tomó una muestra para PCR de una segmentación del ADN mitocondrial de 50 puertorriqueños de una misma región. “identificados un total de 266 sustituciones nucleótido distribuidos entre 84 sitios, y 12 solo cambio de nucleótido distribuido longitud en 11 sitios”.

En conclusión se encontró, mediante la investigación basada en los sujetos de investigación que la sustitución observada obedeció a la tendencia esperada hacia la transición en lugar de los acontecimientos tipo transversal. Análisis de la secuencia revelada la existencia de 33 linajes mitocondriales (mt-linajes) definido por 20 posiciones variables. Estos 33 mt-linajes resultaron ser agrupados en cuatro grupos principales, que definieron el origen étnico de los puertorriqueños. Sesenta y ocho por ciento del puertorriqueños mt-linajes resultaron ser similares a los del África Meridional mt-linajes.

Población islandesa

Islandia fue una tierra deshabitada hasta el año 870 aproximadamente, cuando llegaron allí los primeros colonos irlandeses y vikingos. Un estudio realizado sobre miles de muestras de ADN mitocondrial de los islandeses reveló que el 37 % era de origen escandinavo, mientras que el porcentaje restante pertenecía a antepasados irlandeses y escoceses.También se encontró el haplogrupo C1, característico de los nativos americanos y en algunos pueblos del este de Asia. Una posible explicación es la captura de nativas norteamericanas por los vikingos durante sus exploraciones de este continente, como se relata en algunas sagas.

Catéter

Un catéter (del latín cathĕter, y este del gr. καθετήρ) es, en medicina, un dispositivo con forma de tubo estrecho y alargado que puede ser introducido dentro de un tejido o vena. Los catéteres permiten la inyección de fármacos, el drenaje de líquidos o bien el acceso de otros instrumentos médicos. Existen muchos tipos de catéter, como lo son el catéter Tenckhoff, catéter de Mahurkar, catéter Vizcarra (que comúnmente se le conoce como "punzocat", catéter largo, etc.).

Fue inventado en Estados Unidos en 1752.

Plasma (sangre)

El plasma es la fracción líquida y acelular de la sangre. Se obtiene al dejar a la sangre desprovista de células como los glóbulos rojos y los glóbulos blancos. Está compuesto por un 90 % de agua, un 7 % de proteínas, y el 3 % restante por grasa, glucosa, vitaminas, hormonas, oxígeno, dióxido de carbono y nitrógeno, además de productos de desecho del metabolismo como el ácido úrico. A estos se les pueden añadir otros compuestos como las sales y la urea. Es el componente mayoritario de la sangre, representando aproximadamente el 55% del volumen sanguíneo total, mientras que el 45 % restante corresponde a los elementos formes (tal magnitud está relacionada con el hematocrito.

El suero es el remanente del plasma sanguíneo una vez consumidos los factores hemostáticos por la coagulación de la sangre.
El plasma es salado, arenoso y de color amarillento traslúcido.
Además de transportar los elementos formes, mantiene diferentes sustancias en solución, la mayoría de las cuales son productos del metabolismo celular.
La viscosidad del plasma sanguíneo es 1,5 veces la del agua.
El plasma es una de las reservas líquidas corporales. El total del líquido corporal (60 % del peso corporal; 42 L para un adulto de 70 kg) está distribuido en tres reservas principales: el líquido intracelular (21-25 L), el líquido intersticial (10-13 L) y el plasma (3-4 L). El plasma y el líquido intersticial en conjunto hacen al volumen del líquido extracelular (14-17 L).

Composición

El plasma es un fluido coloidal de composición compleja que contiene numerosos componentes. Abarca el 55 %[cita requerida] del volumen sanguíneo. Está compuesto por un 91,5 % de agua, además de numerosas sustancias inorgánicas y orgánicas (solutos del plasma), distribuidas de la siguiente forma:
LDL, HDL, protrombina, transferrina.
Metabolitos orgánicos (no electrolíticos) y compuestos de desecho (20 %), fosfolípidos (280 mg/dL), colesterol (150 mg/dL), triacilgliceroles (125 mg/dL), glucosa (100 mg/dL), urea (15 mg/dL), ácido láctico (10 mg/dL), ácido úrico (3 mg/dL), creatinina (1,5 mg/dL), bilirrubina (0,5 mg/dL) y sales biliares (trazas).
Componentes inorgánicos (10 %) Cloruro de sodio (NaCl)
Bicarbonato de sodio (NaHCO3)
Fosfato
Cloruro de calcio (CaCl)
Cloruro de magnesio (MgCl)
Cloruro de potasio (KCl)
sulfato de sodio (Na2SO4)

 

Funciones de conjunto de las proteínas plasmáticas:
Función oncótica manteniendo el volumen plasmático y la volemia.
Función tampón o buffer colaborando en la estabilidad del pH sanguíneo.
Función reológica por su participación en la viscosidad de la sangre, y por ahí, mínimamente contribuyen con la resistencia vascular periférica y la presión vascular (tensión arterial).
Función electroquímica, interviniendo en el equilibrio electroquímico de concentración de iones (Efecto Donnan).

Las proteínas plasmáticas se clasifican en:
Albúmina: intervienen en el control del nivel de agua en el plasma sanguíneo, y en el transporte de lípidos por la sangre.
Globulinas: relacionadas fundamentalmente con mecanismos de defensa del organismo.
Fibrinógeno: proteína esencial para que se realice la coagulación sanguínea.
Otros solutos 1,5 %Sales minerales
Nutrientes
Gases disueltos
Sustancias reguladoras
Vitaminas
Productos de desecho

Origen

Los componentes del plasma se forman en varias partes del organismo:
En el hígado se sintetizan todas las proteínas plasmáticas salvo las inmunoglobulinas, que son producto de síntesis de las células plasmáticas.
Las glándulas endocrinas secretan sus hormonas correspondientes hacia la sangre.
El riñón mantiene constante la concentración de agua y solutos salinos.
Los lípidos son aportados por los colectores linfáticos.
Otras sustancias son introducidas por absorción intestinal.

Nutrimento

Un nutrimento o nutriente es un producto químico procedente del exterior de la célula y que ésta necesita para realizar sus funciones vitales. Es tomado por la célula y transformado en constituyente celular a través de un proceso metabólico de biosíntesis llamado anabolismo, o bien, es degradado para la obtención de otras moléculas y energía.

Los alimentos son los encargados de aportarle al organismo toda la energía que necesita para llevar a cabo sus funciones y poder mantenerse en perfecto estado. Esta energía se encuentra en forma de calorías contenidas en los nutrientes de los alimentos, principalmente en los hidratos de carbono (carbohidratos), presentes en las patatas, las legumbres, los cereales y sus derivados como el pan o la pasta; y en las grasas que se encuentran en aceites, mantequilla, margarina o nata, y camufladas en otros alimentos como es el caso de algunas carnes, pescados y los frutos secos. Por tanto cuanto mayor sea la ingesta de alimentos ricos en estos nutrientes, mayor será también el valor energético de la dieta.

Los nutrientes son cualquier elemento o compuesto químico necesario para el metabolismo de un ser vivo. Es decir, los nutrientes son algunas de las sustancias contenidas en los alimentos que participan activamente en las reacciones metabólicas para mantener todas las funciones del organismo.

Desde el punto de vista de la botánica y la ecología, los nutrimentos básicos son el oxígeno, el agua y los minerales necesarios para la vida de las plantas, que a través de la fotosíntesis incorporan la materia viva, constituyendo así la base de la cadena alimentaria, una vez que estos vegetales van a servir de alimento a los animales.

Los seres vivos que no tienen capacidad fotosintética, como los animales, los hongos y muchos protoctistas, se alimentan de plantas y de otros animales, ya sea vivos o en descomposición. Para estos seres, los nutrimentos son los compuestos orgánicos e inorgánicos contenidos en los alimentos y que, de acuerdo con su naturaleza química, se clasifican en los siguientes tipos de sustancias:
Proteínas
Glúcidos
Lípidos
Vitaminas
Sales minerales

Mención aparte hay que realizar con la fibra alimentaria, ya que estrictamente no es un nutriente. Ciertamente forma parte de algunos alimentos (los vegetales), desarrolla funciones de interés fisiológico (contribuye a la motilidad intestinal, puede regular los niveles de lipoproteínas plasmáticas o modifica la glucemia postprandial), pero sus constituyentes no participan activamente en procesos metabólicos necesarios para el organismo.

Clasificación de nutrientes

Según la importancia

En función de la participación en las reacciones metabólicas del organismo en su conjunto, los nutrientes pueden ser:

Nutrientes no esenciales

Los que no son vitales para el organismo y que, bajo determinadas condiciones, se sintetizan a través de moléculas precursoras (generalmente, nutrientes esenciales). Por tanto, el organismo no necesita el aporte regular de las mismas a condición de que obtenga las sustancias precursoras de su medio ambiente. Estas son producidas por el metabolismo del organismo.

Nutrientes esenciales

Los que son vitales para el organismo, dado que no los puede sintetizar. Es decir, son las sustancias que de forma ineludible se tienen que obtener del medio ambiente. Para los humanos, éstos incluyen ácidos grasos esenciales, aminoácidos esenciales, algunas vitaminas y ciertos minerales. El oxígeno y el agua también son esenciales para la supervivencia humana, pero generalmente no se consideran nutrientes cuando se consumen de manera aislada. Los humanos pueden obtener energía a partir de una gran variedad de grasas, carbohidratos, proteínas y etanol y pueden sintetizar otros compuestos (por ejemplo, ciertos aminoácidos) a partir de nutrientes esenciales.

Los nutrientes tienen una función significativa sobre la salud, ya sea benéfica o tóxica. Por ejemplo, el sodio es un nutriente que participa en procesos de equilibrio hidroelectrolítico cuando se proporciona en cantidades adecuadas pero su aporte excesivo en la dieta puede favorecer la hipertensión arterial.

Según su cantidad

En función de la cantidad necesaria para las plantas y organismos, se clasifican en dos:

Macronutrientes (hidratos de carbono, proteínas y grasas)

Se requieren en grandes cantidades diarias (habitualmente del orden de hectogramos). Estos nutrientes participan como sustratos en los procesos metabólicos.

Micronutrientes (minerales y vitaminas)

Se requieren en pequeñas cantidades (habitualmente en cantidades inferiores a miligramos). Estos nutrientes participan en el metabolismo como reguladores de los procesos energéticos, pero no como sustratos.

Según su función

Aunque un mismo nutriente puede realizar varias funciones, se pueden clasificar en:

Energéticos

Los que sirven de sustrato metabólico para obtener energía, con el fin de que el organismo pueda llevar a cabo las funciones necesarias. Por ejemplo, las grasas (lípidos) y los glúcidos.

Plásticos o estructurales

Los que forman la estructura del organismo. También permiten su crecimiento. Por ejemplo, las proteínas, los glúcidos, ciertos lípidos (colesterol), y algunos elementos minerales tales como calcio, fósforo, etc.

Reguladores

Los que controlan las reacciones químicas del metabolismo. Los nutrientes reguladores son las vitaminas y algunos minerales (sodio, potasio, etc).

Sustancias que proveen energía

Carbohidratos

Los carbohidratos son azúcares integrados por monosacáridos. Los carbohidratos son clasificados por el número de unidades de azúcar: monosacáridos (tales como la glucosa, la fructosa y la galactosa), disacáridos (tales como la sacarosa, lactosa y maltosa) y polisacáridos (tales como el almidón, el glucógeno y la celulosa). Los carbohidratos brindan energía por más tiempo que las grasas.

Proteínas

Las proteínas son compuestos orgánicos que consiste en aminoácidos unidos por enlaces peptídicos. El organismo no puede fabricar alguno de los aminoácidos (llamados aminoácidos esenciales). Las proteínas crean enzimas, queratina, energía, anticuerpos, aumenta el sistema inmune y ayudan al crecimiento y desarrollo celular. En nutrición, las proteínas son degradadas por la pepsina, hasta aminoácidos libres, durante la digestión.

Grasas

Las grasas consisten en una molécula de glicerina con tres ácidos grasos unidos. Los ácidos grasos son una larga cadena hidrocarbonada lineal no ramificada, conectadas solo por enlaces sencillos (ácidos grasos saturados) o por enlaces dobles y sencillos (ácidos grasos insaturados).

Las grasas son necesarias para mantener el funcionamiento apropiado de las membranas celulares, para aislar las vísceras contra el choque, para mantener estable la temperatura corporal y para mantener saludable el cabello y la piel. El organismo no fabrica ciertos ácidos grasos (llamados ácidos grasos esenciales) y la dieta debe suplirlos.

Las grasas tienen un contenido energético de 9 kcal/g (37,7 kJ/g); proteínas y carbohidratos tienen 4 kcal/g (16,7 kJ/g). El etanol tienen contenido de energía de 7 kcal/g (29,3 kJ/g).

Lípidos

 

Regulan la temperatura del cuerpo a través del aislamiento, y provee energía a nuestro cuerpo.

Nutrientes y plantas

Los elementos químicos consumidos en mayores cantidades por las plantas son el carbón, el hidrógeno y el oxígeno. Esto están presentes en el medio ambiente en la forma de agua y dióxido de carbono; la energía es provista por la luz del sol. El nitrógeno, el fósforo, el potasio y el azufre también son necesitados en relativas grandes cantidades. Juntos, todos estos son los macronutrientes elementales para las plantas.

Usualmente éstos son obtenidos a partir de fuentes inorgánicas (por ejemplo dióxido de carbono, agua, nitrato, fosfato y sulfato) o compuestos orgánicos (por ejemplo carbohidratos, lípidos y proteínas), aunque las moléculas diatómicas del nitrógeno y del oxígeno son frecuentemente usadas. Otros elementos químicos también son necesarias para llevar a cabo varios procesos y construir estructuras.

Un exceso de oferta de nutrientes a las plantas en el medio ambiente puede causar el crecimiento excesivo de plantas y algas. Éste proceso es llamado eutroficación puede causar un balance en el número de la población y otros nutrientes que puede ser dañino para ciertas especies. Por ejemplo, el florecimiento de una alga puede depletar el oxígeno disponible para la respiración de los peces. Las causas incluyen la polución del agua a partir de aguas residuales provenientes de granjas (conteniendo un exceso de fertilizantes). El nitrógeno y el fósforo son comúnmente el factor limitante en crecimiento y por lo tanto los que más probablemente desencadenen la eutroficación cuando son introducidos artificialmente.

Inyección (medicina)

Una inyección en medicina es la introducción de medicamento o productos biológicos al sitio de acción mediante la punción a presión en diferentes tejidos corporales mediante una jeringa y una aguja hipodérmica o de inyección.

Jeringas y agujas

Las jeringas son en la actualidad de plástico, vienen envasadas en una bolsa de silicona hermética, son estériles y se utilizan una sola vez, a fin de evitar riesgos de infecciones entre varios pacientes. Existen varios tamaños de jeringas. Desde las más pequeñas, con capacidad de un mililitro o centímetro cúbico, que se emplean sobre todo para la administración de insulina a pacientes diabéticos, hasta las mayores, con capacidad de 60 mililitros. Las más usuales son las de 3 y de 5 mililitros.

Las agujas tienen un tubo de metal y un adaptador de plástico. Mediante este adaptador se fija la aguja al extremo inferior de la jeringa. Al igual que las jeringas, las agujas también se suministran envasadas individualmente y estériles, y se utilizan una sola vez para evitar infecciones. Las agujas se fabrican en diversos tamaños, los cuales se utilizan según la forma de inyección.

Las inyecciones son siempre hipodérmicas, es decir, que el líquido se introduce debajo de la piel. Sin embargo, recientemente se ha propuesto el desarrollo de «nanoparches» como alternativa a las inyecciones tradicionales. Los nanoparches introducirían en la piel (y no debajo de ella) la sustancia activa de una manera indolora, segura y, en el caso de las vacunas, más eficiente.

Tipos de inyección

Hay cuatro formas de inyecciones: intravenosa, intramuscular, subcutánea e intradérmica

Inyección intravenosa

En la inyección intravenosa se introduce la aguja a través de la piel en una vena. En un ángulo de 35º El líquido entra por lo tanto en el sistema del cuerpo.

Inyección intramuscular

En la inyección intramuscular la aguja penetra en un tejido muscular, depositando el líquido en ese lugar. Desde allí el cuerpo lo va absorbiendo lentamente a través de los vasos sanguíneos capilares. En el cuerpo humano se suelen inyectar en los brazos, los glúteos o las piernas.

Inyección subcutánea

En la inyección subcutánea la aguja penetra muy poco espacio por debajo de la piel, el ángulo de inyección con respecto a la piel debe ser de 45º, el líquido se deposita en esa zona, desde donde es igualmente absorbida de forma lenta por todo el organismo.

Inyección intradérmica

En la inyección intradérmica la aguja penetra solo en la piel (dermis) en un ángulo de 15º paralelo al eje longitudinal del antebrazo. La inyección ha de ser lenta y, si es correcta, aparecerá una pequeña pápula en el punto de inyección que desaparece espontáneamente en 10 - 30 minutos. El producto biológico será absorbido de forma lenta y local.

Aguja hipodérmica

Fue inventada en 1853 por Alexander Wood, médico de Edimburgo, cuya esposa padecía un cáncer incurable, precisamente para inyectarle morfina. Fue la primera persona en recibir esta droga por esa vía y la primera en adquirir el hábito de la aguja.

El invento fue posible gracias a que el irlandés Francis Rynd (1811-1861) había inventado la «aguja hueca» en 1844.

Pero quien verdaderamente popularizó el método fue el médico francés Charles Gabriel Pravaz (1791-1855), que diseñó una jeringa, precursora de las actuales, pero con pistón el mismo año que Wood.

Más tarde, Williams Fergusson (1808-1873) la simplificó y luego el fabricante Luer la industrializó con una forma similar a las usadas en la actualidad.

El concepto era conocido desde la antigüedad, ya Galeno usó y describió métodos de inyección; sin embargo las inyecciones aprovechaban incisiones o se practicaban, la invención de la aguja hipodérmica fue, por tanto, un gran avance.

Analgésico
Un analgésico es un medicamento para calmar o eliminar el dolor, ya sea de cabeza, muscular, de artrítis, etc. Existen diferentes tipos de analgésicos y cada uno tiene sus ventajas y riesgos. Etimológicamente procede del prefijo griego an- (‘carencia, negación’) y άλγος (/álgos/, ‘dolor’).

Aunque se puede usar el término para cualquier sustancia, es decir, cualquier medio que reduzca el dolor, generalmente se refiere a un conjunto de fármacos, de familias químicas diferentes que calman o eliminan el dolor por diferentes mecanismos.

Clasificación de los analgésicos

Antiinflamatorios no esteroideos

Los antiinflamatorios no esteroideos (AINE) son un grupo de fármacos heterogéneo, cuyo representante más conocido es la aspirina. Actúan sobre todo inhibiendo a unas enzimas llamadas ciclooxigenasas, cruciales en la producción de prostaglandinas, sustancias mediadoras del dolor. Corresponden al primer escalón analgésico de la OMS, junto con el paracetamol (AINE carente de efectos antiinflamatorios). Además de propiedades analgésicas, los AINE son antipiréticos, antiinflamatorios y algunos antiagregantes plaquetarios. Tienen el inconveniente de que no se puede superar una dosis de tolerancia o techo terapéutico debido a los graves efectos adversos como es la hemorragia.

Opiáceos menores

Son un grupo de sustancias, la mayoría sintéticas como el tramadol que imitan, con menor poder analgésico, la acción de los opioides. Corresponden al segundo escalón analgésico de la OMS.

Opiáceos mayores

Son un grupo de fármacos, unos naturales (opiáceo) como la morfina y otros artificiales (opioide) como el fentanilo, que actúan sobre los receptores opioides de las neuronas del sistema nervioso, imitando el poder analgésico de los opiáceos endógenos. Son los fármacos analgésicos más potentes conocidos y corresponden al tercer escalón analgésico de la OMS. Se pueden asociar y potencian su acción con los AINE, pero no es biológicamente correcto asociarlos a opiáceos menores.

Los opiáceos mayores no presentan techo terapéutico, por lo que se puede aumentar la dosis según la presencia de dolor y tolerancia del paciente. Presenta el inconveniente de que son sustancias estupefacientes y deprimen el sistema nervioso central en las primeras dosis.

Otros

Ziconotide es un fármaco que no es opioide, un AINE, y tampoco un Anestésico local usado en el tratamiento del dolor crónico.

Fármacos adyuvantes

Aunque no son analgésicos cuando se administran aisladamente, potencian la acción de cualquier analgésico en asociación. Entre los fármacos adyuvantes analgésicos se encuentran:
Corticoides.
Antidepresivos, sobre todo los antidepresivos tricíclicos.
Anticonvulsivantes, sobre todo en el dolor neuropático.

Aunque no se pueden incluir dentro del grupo de los analgésicos, el placebo, es decir, el efecto placebo o alivio del dolor en ausencia de un tratamiento conocido biológicamente como activo, es capaz de activar áreas cerebrales dedicadas al alivio del dolor, provocando cambios físicos en la manera en la que el cerebro responde al dolor, visible en resonancia magnética funcional, por lo que está demostrado que la confianza que deposita el paciente en un tratamiento, mejora los resultados del mismo. A pesar de todo, ninguna fase del tratamiento del dolor pasa por la utilización de placebo, porque no es ético.